Abstract
Primary health care providers play a critical role in maintaining public health, and the appropriate prescription of pharmaceutical products is a major component of their practice. This series of articles entitled ‘Clinical Pharmacology Review for Primary Health Care Providers' is intended to help primary health care providers select more appropriate prescriptions for frequently used drugs based on up-to-date information. We expect that this effort will contribute to improvements in public health and diminish unnecessary drug use.
References
1. Chrousos GP. Adrenocorticosteroids & adrenocortical antagonists. In: Katzung B & Trevor A (eds) Basic and Clinical Pharmacology. 13th ed.Mc-Grow-Hill education, Columbus;2015. p. 680–695.
2. Falkenstein E, Tillmann HC, Christ M, Feuring M, Wehling M. Multiple actions of steroid hormones–a focus on rapid, nongenomic effects. Pharmacol Rev. 2000; 52:513–556.
3. Allen DB. Effects of inhaled steroids on growth, bone metabolism and adrenal function. Expert Rev Respir Med. 2007; 1:65–74. doi: 10.1586/17476 348.1.1.65.
4. Aubert-Wastiaux H, Moret L, Le Rhun A, Fontenoy AM, Nguyen JM, Leux C, et al. Topical corticosteroid phobia in atopic dermatitis: a study of its nature, origins and frequency. Br J Dermatol. 2011; 165:808–814. doi: 10.11 11/j.1365-2133.2011.10449.x.
5. Aulakh R, Singh S. Strategies for minimizing corticosteroid toxicity: a review. Indian J Pediatr. 2008; 75:1067–1073. doi: 10.1007/s12098-008-0211-6.
7. Czock D, Keller F, Rasche FM, Häussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005; 44:61–98.
8. Derendorf H, Hochhaus G, Rohatagi S, Möllmann H, Barth J, Sourgens H, et al. Pharmacokinetics of triamcinolone acetonide after intravenous, oral, and inhaled administration. J Clin Pharmacol. 1995; 35:302–305.
9. Kubota K, Lo ES, Huttinot G, Andersen PH, Maibach HI. Plasma concentrations of betamethasone after topical application of betamethasone 17-valerate: comparison with oral administration. Br J Clin Pharmacol. 1994; 37:86–88.
10. Barnes PJ. Mechanisms and resistance in glucocorticoid control of inflammation. J Steroid Biochem Mol Biol. 2010; 120:76–85. doi: 10.1016/j.js-bmb.2010.02.018.
11. Garg R, Adler GK. Pharmacology of the adrenal cortex. In: Golan DE, Tashjian AH Jr., Armstrong EJ, Armstrong AW (eds) Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy. 3rd ed.LWW, Philadelphia;2011. p. 489–504.
12. van der Velden VH. Glucocorticoids: mechanisms of action and antiinflammatory potential in asthma. Mediators Inflamm. 1998; 7:229–237.
13. Laudenbach JM, Epstein JB. Treatment strategies for oropharyngeal candidiasis. Expert Opin Pharmacother. 2009; 10:1413–1421. doi: 10.1517/14 656560902952854.
14. Kaur M, Chivers JE, Giembycz MA, Newton R. Long-acting beta2-adrenoceptor agonists synergistically enhance glucocorticoid-dependent transcription in human airway epithelial and smooth muscle cells. Mol Pharmacol. 2008; 73:203–214.
15. Barnes PJ. Scientific rationale for inhaled combination therapy with long-acting beta2-agonists and corticosteroids. Eur Respir J. 2002; 19:182–191.
16. Robertson DB, Maibach HI. Dermatologic pharmacology. In: Katzung B & Trevor A (eds) Basic and Clinical Pharmacology. 13th ed.McGrow-Hill education, Columbus;2015. p. 1033–1051.
17. Lemos MC, Correr WR, da Silva de Avó LR, Germano CM, Kurachi C, Polikarpov I, et al. Fluorescence spectroscopy as a tool to detect and evaluate glucocorticoid-induced skin atrophy. Lasers Med Sci. 2012; 27:1059–1065. doi: 10.1007/s10103-011-1045-4.
19. Simon D. Management of growth retardation in juvenile idiopathic arthritis. Horm Res. 2007; 68:S122–S125. doi: 10.1159/000110605.
20. Silbermann M, Maor G. Mechanisms of glucocorticoid-induced growth retardation: impairment of cartilage mineralization. Acta Anat (Basel). 1978; 101:140–149.
21. Andrew R, Gale CR, Walker BR, Seckl JR, Martyn CN. Glucocorticoid metabolism and the metabolic syndrome: associations in an elderly cohort. Exp Clin Endocrinol Diabetes. 2002; 110:284–290.
Table 1.
Table 2.
Table 3.
Concentration | Drug |
---|---|
Lowest efficacy | |
0.25–2.5% | Hydrocortisone |
0.25% | Methylprednisolone acetate (Medrol) |
0.1% | Dexamethasone1 (Decaderm) |
1.0% | Methylprednisolone acetate (Medrol) |
0.5% | Prednisolone (MetiDerm) |
0.2% | Betamethasone1 (Celestone) |
Low efficacy | |
0.01% | Fluocinolone acetonide1 (Fluonid, Synalar) |
0.01% | Betamethasone valerate1 (Valisone) |
0.025% | Fluorometholone1 (Oxylone) |
0.05% | Alclometasone dipropionate (Aclovate) |
0.025% | Triamcinolone acetonide1 (Aristocort, Kenalog, Triacet) |
0.1% | Clocortolone pivalate1 (Cloderm) |
0.03% | Flumethasone pivalate1 (Locorten) |
Intermediate efficacy | |
0.2% | Hydrocortisone valerate (Westcort) |
0.1% | Mometasone furoate (Elocon) |
0.1% | Hydrocortisone butyrate (Locoid) |
0.1% | Hydrocortisone probutate (Pandel) |
0.025% | Betamethasone benzoate1 (Uticort) |
0.025% | Flurandrenolide1 (Cordran) |
0.1% | Betamethasone valerate1 (Valisone) |
0.1% | Prednicarbate (Dermatop) |
0.05% | Fluticasone propionate (Cutivate) |
0.05% | Desonide (Desowen) |
0.025% | Halcinonide1 (Halog) |
0.05% | Desoximetasone1 (Topicort L.P.) |
0.05% | Flurandrenolide1 (Cordran) |
0.1% | Triamcinolone acetonide1 |
0.025% | Fluocinolone acetonide1 |
High efficacy | |
0.05% | Fluocinonide1 (Lidex) |
0.05% | Betamethasone dipropionate1 (Diprosone, Maxivate) |
0.1% | Amcinonide1 (Cyclocort) |
0.25% | Desoximetasone1 (Topicort) |
0.5% | Triamcinolone acetonide1 |
0.2% | Fluocinolone acetonide1 (Synalar-HP) |
0.05% | Diflorasone diacetate1 (Florone, Maxiflor) |
0.1% | Halcinonide1 (Halog) |
Highest efficacy | |
0.05% | Betamethasone dipropionate in optimized vehicle (Diprolene)1 |
0.05% | Diflorasone diacetate1 in optimized vehicle (Psorcon) |
0.05% | Halobetasol propionate1 (Ultravate) |
0.05% | Clobetasol propionate1 (Temovate) |