Abstract
Subclinical vitamin B12 deficiency is common in the elderly worldwide. We investigated the change of serum vitamin B12 concentration with aging and compared anthropometric data and clinical health indicators between normal (≥ 340 pg/mL) and low (< 340 pg/mL) serum vitamin B12 groups in 470 Korean women aged 65 years and over living in a rural area. Serum vitamin B12 concentration showed inverse correlation with age (r = −0.0992, p < 0.05). The normal B12 group showed significantly (p < 0.05) higher red blood cell count, hemoglobin, and hematocrit compared to the low B12 group, however, no difference in mean corpuscular volume was observed between the two groups. The normal B12 group showed significantly lower serum homocysteine concentration (p < 0.01) and prevalence of vitamin D (p < 0.01) or folate deficiency (p < 0.001). Bone mineral density (T-score) was significantly higher (p < 0.05) in the normal B12 group, compared with that in the low B12 group, and showed positive correlation (r = 0.1490, p < 0.01) with serum vitamin B12 concentration after adjusting for age, body weight, and body mass index. No differences in anthropometric data, physical activity, and smoking and drinking habits were observed between the two groups. In conclusion, it could be suggested that older female adults with normal serum vitamin B12 level would be less anemic and osteoporotic and more resistant to hyperhomocysteinemia associated chronic diseases than those with low serum vitamin B12 level. (J Nutr Health 2013; 46(3): 239 – 249)
References
1). Stabler SP, Allen RH. Vitamin B12 deficiency as a worldwide problem. Annu Rev Nutr. 2004; 24:299–326.
2). Johnson MA. Nutrition and aging–practical advice for healthy eating. J Am Med Womens Assoc. 2004; 59(4):262–269.
3). Andrès E, Loukili NH, Noel E, Kaltenbach G, Abdelgheni MB, Perrin AE, Noblet-Dick M, Maloisel F, Schlienger JL, Blicklé JF. Vitamin B12 (cobalamin) deficiency in elderly patients. CMAJ. 2004; 171(3):251–259.
4). Herbert V. Staging vitamin B-12 (cobalamin) status in vegetari-ans. Am J Clin Nutr. 1994; 59(5 Suppl):1213S–1222S.
5). Kwok T, Cheng G, Woo J, Lai WK, Pang CP. Independent effect of vitamin B12 deficiency on hematological status in older Chinese vegetarian women. Am J Hematol. 2002; 70(3):186–190.
7). Johnson MA, Hawthorne NA, Brackett WR, Fischer JG, Gunter EW, Allen RH, Stabler SP. Hyperhomocysteinemia and vitamin B-12 deficiency in elderly using Title IIIc nutrition services. Am J Clin Nutr. 2003; 77(1):211–220.
8). Oh R, Brown DL. Vitamin B12 deficiency. Am Fam Physician. 2003; 67(5):979–986.
9). Sakuta H, Suzuki T, Yasuda H, Wakiyama H, Hase K. Plasma vitamin B12, folate and homocysteine levels in gastrectomized men. Clin Nutr. 2005; 24(2):244–249.
11). Lewerin C, Jacobsson S, Lindstedt G, Nilsson-Ehle H. Serum biomarkers for atrophic gastritis and antibodies against Helicobacter pylori in the elderly: implications for vitamin B12, folic acid and iron status and response to oral vitamin therapy. Scand J Gastroenterol. 2008; 43(9):1050–1056.
12). Chui CH, Lau FY, Wong R, Soo OY, Lam CK, Lee PW, Leung HK, So CK, Tsoi WC, Tang N, Lam WK, Cheng G. Vitamin B12 deficiency–need for a new guideline. Nutrition. 2001; 17(11–12):917–920.
13). Wei W, Liu YH, Zhang CE, Wang Q, Wei Z, Mousseau DD, Wang JZ, Tian Q, Liu GP. Folate/vitamin-B12 prevents chronic hyper-homocysteinemia-induced tau hyperphosphorylation and memory deficits in aged rats. J Alzheimers Dis. 2011; 27(3):639–650.
14). Setola E, Monti LD, Galluccio E, Palloshi A, Fragasso G, Paroni R, Magni F, Sandoli EP, Lucotti P, Costa S, Fermo I, Galli-Kien-le M, Origgi A, Margonato A, Piatti P. Insulin resistance and endothelial function are improved after folate and vitamin B12 therapy in patients with metabolic syndrome: relationship between homocysteine levels and hyperinsulinemia. Eur J Endocrinol. 2004; 151(4):483–489.
15). He K, Merchant A, Rimm EB, Rosner BA, Stampfer MJ, Willett WC, Ascherio A. Folate, vitamin B6, and B12 intakes in relation to risk of stroke among men. Stroke. 2004; 35(1):169–174.
16). Ng TP, Feng L, Niti M, Kua EH, Yap KB. Folate, vitamin B12, homocysteine, and depressive symptoms in a population sample of older Chinese adults. J Am Geriatr Soc. 2009; 57(5):871–876.
17). Prodan CI, Cowan LD, Stoner JA, Ross ED. Cumulative incidence of vitamin B12 deficiency in patients with Alzheimer disease. J Neurol Sci. 2009; 284(1–2):144–148.
18). Tangney CC, Aggarwal NT, Li H, Wilson RS, Decarli C, Evans DA, Morris MC. Vitamin B12, cognition, and brain MRI measures: a cross-sectional examination. Neurology. 2011; 77(13):
19). Park S, Johnson MA. What is an adequate dose of oral vitamin B12 in older people with poor vitamin B12 status? Nutr Rev. 2006; 64(8):373–378.
20). Smith AD, Refsum H. Vitamin B-12 and cognition in the elderly. Am J Clin Nutr. 2009; 89(2):707S–711S.
21). Garrod MG, Green R, Allen LH, Mungas DM, Jagust WJ, Haan MN, Miller JW. Fraction of total plasma vitamin B12 bound to transcobalamin correlates with cognitive function in elderly La22) Lim HS, Heo YR. Plasma total homocysteine, folate, and vitamin B12 status in Korean adults. J Nutr Sci Vitaminol (Tokyo). 2002; 48(4):290–297.
23). Kim HJ, Kim MK, Kim JU, Ha HY, Choi BY. Major determinants of serum homocysteine concentrations in a Korean population. J Korean Med Sci. 2010; 25(4):509–516.
24). Kim J, Park MH, Kim E, Han C, Jo SA, Jo I. Plasma homocysteine is associated with the risk of mild cognitive impairment in an elderly Korean population. J Nutr. 2007; 137(9):2093–2097.
25). Kim G, Kim H, Kim KN, Son JI, Kim SY, Tamura T, Chang N. Relationship of cognitive function with B vitamin status, homocysteine, and tissue factor pathway inhibitor in cognitively impaired elderly: a cross-sectional survey. J Alzheimers Dis. 2013; 33(3):853–862.
26). Korean Society for the Study of Obesity. Diagnosis and therapy of obesity: Asia-Pacific area guideline. Seoul: Korean Society for the Study of Obesity;2000.
27). Carmel R. Prevalence of undiagnosed pernicious anemia in the elderly. Arch Intern Med. 1996; 156(10):1097–1100.
28). Kwak CS, Lee MS, Lee HJ, Whang JY, Park SC. Dietary source of vitamin B12 intake and vitamin B12 status in female elderly Koreans aged 85 and older living in rural area. Nutr Res Pract. 2010; 4(3):229–234.
29). Hvas AM, Nexo E. Diagnosis and treatment of vitamin B12 defi-ciency–an update. Haematologica. 2006; 91(11):1506–1512.
30). Stabler SP. Clinical practice. Vitamin B12 deficiency. N Engl J Med. 2013; 368(2):149–160.
31). Miller JW, Garrod MG, Rockwood AL, Kushnir MM, Allen LH, Haan MN, Green R. Measurement of total vitamin B12 and holo-transcobalamin, singly and in combination, in screening for metabolic vitamin B12 deficiency. Clin Chem. 2006; 52(2):278–285.
32). Clarke R, Grimley Evans J, Schneede J, Nexo E, Bates C, Fletcher A, Prentice A, Johnston C, Ueland PM, Refsum H, Sherliker P, Birks J, Whitlock G, Breeze E, Scott JM. Vitamin B12 and folate deficiency in later life. Age Ageing. 2004; 33(1):34–41.
33). Bang SM, Lee JO, Kim YJ, Lee KW, Lim S, Kim JH, Park YJ, Chin HJ, Kim KW, Jang HC, Lee JS. Anemia and activities of daily living in the Korean urban elderly population: results from the Korean Longitudinal Study on Health and Aging (KLoSHA). Ann Hematol. 2013; 92(1):59–65.
34). den Elzen WP, van der Weele GM, Gussekloo J, Westendorp RG, Assendelft WJ. Subnormal vitamin B12 concentrations and anae-mia in older people: a systematic review. BMC Geriatr. 2010; 10:42.
35). Kuo HK, Sorond FA, Chen JH, Hashmi A, Milberg WP, Lipsitz LA. The role of homocysteine in multisystem age-related problems: a systematic review. J Gerontol A Biol Sci Med Sci. 2005; 60(9):1190–1201.
36). Ravaglia G, Forti P, Maioli F, Martelli M, Servadei L, Brunetti N, Porcellini E, Licastro F. Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am J Clin Nutr. 2005; 82(3):636–643.
37). Hooshmand B, Solomon A, Kåreholt I, Rusanen M, Hänninen T, Leiviskä J, Winblad B, Laatikainen T, Soininen H, Kivipelto M. Associations between serum homocysteine, holotranscobal-amin, folate and cognition in the elderly: a longitudinal study. J Intern Med. 2012; 271(2):204–212.
38). Houston DK, Johnson MA, Nozza RJ, Gunter EW, Shea KJ, Cutler GM, Edmonds JT. Age-related hearing loss, vitamin B-12, and folate in elderly women. Am J Clin Nutr. 1999; 69(3):564–571.
39). Meng S, Ciment S, Jan M, Tran T, Pham H, Cueto R, Yang XF, Wang H. Homocysteine induces inflammatory transcriptional signaling in monocytes. Front Biosci. 2013; 18:685–695.
40). Herrmann M, Widmann T, Colaianni G, Colucci S, Zallone A, Herrmann W. Increased osteoclast activity in the presence of increased homocysteine concentrations. Clin Chem. 2005; 51(12):2348–2353.
41). Sakamoto W, Isomura H, Fujie K, Deyama Y, Kato A, Nishihira J, Izumi H. Homocysteine attenuates the expression of osteocalcin but enhances osteopontin in MC3T3-E1 preosteoblastic cells. Biochim Biophys Acta. 2005; 1740(1):12–16.
42). Dhonukshe-Rutten RA, Lips M, de Jong N, Chin A Paw MJ, Hiddink GJ, van Dusseldorp M, De Groot LC, van Staveren WA. Vitamin B-12 status is associated with bone mineral content and bone mineral density in frail elderly women but not in men. J Nutr. 2003; 133(3):801–807.
43). Ouzzif Z, Oumghar K, Sbai K, Mounach A, Derouiche el M, El Maghraoui A. Relation of plasma total homocysteine, folate and vitamin B12 levels to bone mineral density in Moroccan healthy postmenopausal women. Rheumatol Int. 2012; 32(1):123–128.
44). Maggio D, Cherubini A, Lauretani F, Russo RC, Bartali B, Pieran-drei M, Ruggiero C, Macchiarulo MC, Giorgino R, Minisola S, Ferrucci L. 25 (OH)D Serum levels decline with age earlier in women than in men and less efficiently prevent compensatory hyperparathyroidism in older adults. J Gerontol A Biol Sci Med Sci. 2005; 60(11):1414–1419.
45). Huang W, Shah S, Long Q, Crankshaw AK, Tangpricha V. Improvement of pain, sleep, and quality of life in chronic pain patients with vitamin D supplementation. Clin J Pain. 2013; 29(4):341–347.
46). Pérez-López FR, Chedraui P, Fernández-Alonso AM. Vitamin D and aging: beyond calcium and bone metabolism. Maturitas. 2011; 69(1):27–36.
47). Kim YJ, Moon MS, Yang YJ, Kwon O. Relationship between serum 25-hydroxyvitamin D concentration and the risks of metabolic syndrome in premenopausal and postmenopausal women. Korean J Nutr. 2012; 45(1):20–29.
Table 1.
Age (yr) | Serum B12 (pg/mL) |
---|---|
65–69 (n = 109) | 746.5 ± 26.61) |
70–74 (n = 168) | 710.2 ± 232.1 |
75–79 (n = 101) | 690.0 ± 225.6 |
80 + (n = 92) | 674.7 ± 208.0 |
Total (n = 470) | 707.3 ± 225.6 |
Significance | NS 2) |
Table 2.
Normal (n = 440) | Low (n = 26) | Significance | |
---|---|---|---|
Age (yr) | 74.3 ± 5.81) (60–95)2) | 74.6 ± 4.9 (67–86) | NS 3) |
Education (yr) | 01.8 ± 2.4 (0–12) | 01.9 ± 2.6 (0–6) | NS |
Children (person) | 04.9 ± 1.6 | 05.0 ± 1.5 | NS |
Living arrangement | |||
Alone | 217 (47.4) | 13 (50.0) | |
With only spouse | 173 (37.7) | 11 (42.3) | χ2 = 1.4823 |
With children ± spouse | 026 (05.7) | 00 (00.0) | NS |
Others | 042 (09.2) | 02 (07.7) | |
Economic status | |||
High | 014 (03.2) | 00 (00.0) | |
Upper middle | 107 (23.4) | 08 (30.8) | χ2 = 1.4963 |
Lower middle | 212 (48.3) | 11 (42.3) | NS |
Low | 106 (24.1) | 07 (26.9) |
Table 3.
Normal (n = 440) | Low (n = 26) | Significance | |
---|---|---|---|
Self-assessed health status | |||
Healthy | 142 (32.3)1) | 03 (11.5) | χ2 = 6.7913 |
Moderate | 059 (13.4) | 07 (26.9) | p < 0.05 |
Bad | 239 (54.3) | 16 (61.6) | |
Supplementation or functional food intake within last 6 months | |||
Yes | 157 (36.0) | 12 (46.1) | χ2) = 1.1088 |
No | 279 (64.0) | 14 (53.9) | NS2) |
Physical activity (hr/day) | |||
< 2 | 162 (36.8) | 09 (34.6) | χ2 = 0.1336 |
2–3 | 042 (09.5) | 03 (11.5) | NS |
> 3 | 236 (53.6) | 14 (53.9) | |
Medication (subscripted) | |||
0 | 084 (19.3) | 04 (16.0) | χ2 = 0.3302 |
1–2 | 254 (58.2) | 16 (64.0) | NS |
≥ 3 | 098 (22.5) | 05 (20.0) | |
Smoking | |||
Currently yes | 017 (03.9) | 02 (07.7) | χ2 = 3.9480 |
Smoked, but currently no | 019 (04.3) | 03 (11.5) | NS |
Never | 403 (91.8) | 21 (80.8) | |
Drinking (time/month) | 0.68 ± 1.60 | 0.74 ± 1.66 | NS |
0 | 217 (66.2) | 14 (63.6) | |
0 < and ≤ 1 | 062 (18.9) | 04 (18.2) | χ2 = 0.2147 |
1 < and ≤ 3 | 027 (08.2) | 02 (09.1) | NS |
> 3 | 022 (06.7) | 02 (09.1) | |
No. of chronic disease | 2.01 ± 1.253) | 2.07 ± 1.05 | NS |
Prevalence of chronic diseases (%) | |||
Diabetes | 09.1 | 00.0 | χ2 = 2.5920, NS |
Hypertention | 42.4 | 38.5 | χ2 = 0.1537, NS |
Bone & Joint disease | 38.9 | 42.3 | χ2 = 0.1160, NS |
Heart disease | 10.3 | 11.5 | χ2 = 0.0440, NS |
Kidney disease | 01.4 | 00.0 | χ2 = 0.3600, NS |
Digestive disease | 11.4 | 19.2 | χ2 = 1.4472, NS |
Hyperlipidemia | 03.0 | 03.8 | χ2 = 0.0658, NS |
Table 4.
Normal (n = 440) | Low (n = 26) | Significance† | |
---|---|---|---|
Hight (cm) | 147.4 ± 5.91) | 148.9 ± 6.50 | NS 2) |
Weight (kg)‡ | 051.3 ± 8.6 | 52.7 ± 8.70 | NS |
BMI (kg/m 2)‡ | 023.5 ± 3.2 | 23.7 ± 3.40 | NS |
Low weight < 18.5 | 026 (05.9)3) | 02 (07.7) | |
Normal 18.5 ≤ and < 23.0 | 173 (39.3) | 07 (26.9) | χ2 = 1.8074 |
Overweight 23.0 ≤ and < 25.0 | 101 (23.0) | 08 (30.8) | NS |
Obese 25.0 ≤ | 140 (31.8) | 09 (34.6) | |
Body fat (%) | 35.2 ± 3.90 | 35.5 ± 4.00 | NS |
Body muscle (%) | 21.4 ± 2.30 | 21.7 ± 2.00 | NS |
WHR 4) (%) | 91.3 ± 6.60 | 90.9 ± 7.10 | NS |
Obese ≥ 85 | 374 (85.2) | 20 (80.0) | χ2 = 0.4980 |
Normal < 85 | 065 (14.8) | 05 (20.0) | NS |
Arm cir (cm) | 26.7 ± 3.30 | 26.7 ± 3.50 | NS |
Tibia cir (cm) | 31.4 ± 3.00 | 31.3 ± 2.40 | NS |
BMD5) (T-score) | –2.54 ± 1.13 | –2.91 ± 0.74 | p < 0.05 |
Normal ≥ −1.0 | 041 (09.3) | 00 (00.0) | |
Osteopenia −2.5 ≤ and <-1.0 | 150 (34.1) | 07 (26.9) | χ2 = 3.9573 NS |
Osteoporosis < −2.5 | 249 (56.6) | 19 (73.1) | NS |
BMD (Z-score) | 0.13 ± 1.04 | –0.20 ± 0.68 | p < 0.05 |
≥ 0 | 228 (51.8) | 09 (34.6) | |
-1.0 ≤ and < 0 | 157 (35.7) | 14 (53.9) | χ2 = 3.6541 |
≤ −1.0 | 055 (12.5) | 03 (11.5) | NS |
Table 5.
Normal (n = 440) | Low (n = 26) | Significance† | |
---|---|---|---|
Blood pressure (mmHg) | |||
Systolic | 121.6 ± 16.21) | 118.5 ± 16.4 | NS 2) |
Diastolic | 75.3 ± 11.31) | 073.1 ± 11.6 | NS |
Hypertension 3) | 078 (17.7)4) | 03 (11.5) | χ2 = 0.6548 |
Normal | 362 (82.3) | 23 (88.5) | NS |
Red blood cell (106/μL) | 4.08 ± 0.341) | 03.92 ± 0.35 | p < 0.05 |
Normal ≥ 3.6 | 415 (94.3) | 22 (84.6) | χ2 = 3.9603 |
Low < 3.6 | 025 (05.7) | 04 (15.4) | p < 0.05 |
Hemoglobin (g/dL) | 012.4 ± 1.101) | 012.0 ± 1.20 | p < 0.05 |
Normal ≥ 12 | 365 (83.0) | 18 (69.2) | χ2 = 3.1585 |
Low < 12 | 075 (17.0) | 08 (30.8) | NS |
Hematocrit (%) | 038.1 ±3.201) | 036.6 ± 2.80 | p < 0.05 |
Normal ≥ 36 | 355 (80.7) | 16 (61.5) | χ2 = 5.5431 |
Low < 36 | 085 (19.3) | 10 (38.5) | p < 0.05 |
MCV 5) (fL.) | 093.4 ± 4.401) | 094.0 ± 6.50 | NS |
Microcytic ≤ 80 | 004 (00.9) | 00 (00.0) | |
Normal 80 < MCV < 100 | 406 (92.3) | 24 (92.3) | χ2 = 0.2637 NS |
Macrocytic ≥ 100 | 030 (06.8) | 02 (07.7) | NS |
Table 6.
Normal (n = 440) | Low (n = 26) | Significance† | |
---|---|---|---|
Serum B12 (pg/mL) | 732.3 ± 202.41) | 261.4 ± 77.8 | p < 0.001 |
Total protein (g/dL) | 08.34 ± 1.34 | 08.82 ± 1.84 | NS 2) |
Normal ≥ 6.0 | 439 (99.8)3) | 026 (100.0) | χ2 = 0.0592 |
Low < 6.0 | 001 (00.2) | 000 (000.0) | NS |
Albumin (g/dL) | 04.86 ± 0.74 | 05.16 ± 1.02 | p < 0.05 |
Normal ≥ 3.5 | 439 (99.8) | 026 (100.0) | χ2 = 0.0592 |
Low < 3.5 | 001 (00.2) | 000 (000.0) | NS |
Total cholesterol (mg/dL) | 229.5 ± 57.7 | 237.5 ± 82.8 | NS |
High > 220 | 231 (52.5) | 010 (038.5) | χ2 = 1.9375 |
Normal ≤ 220 | 209 (47.5) | 016 (061.5) | NS |
HDL-cholesterol (mg/dL) | 058.1 ± 18.4 | 058.4 ± 24.0 | NS |
Normal (≥ 40) | 379 (86.1) | 023 (088.5) | χ2 = 0.1120 |
Low (< 40) | 061 (13.9) | 003 (011.5) | NS |
LDL-cholesterol (mg/dL) | 137.3 ± 45.7 | 146.8 ± 63.5 | NS |
High >130 | 235 (54.4) | 012 (046.1) | χ2 = 0.5188 |
Normal ≤ 130 | 205 (46.6) | 014 (053.9) | NS |
Triglyceride (mg/dL) | 191.1 ± 101.7 | 195.4 ± 96.6 | NS |
High > 200 | 152 (34.6) | 011 (042.3) | χ2 = 0.6504 |
Normal ≤ 200 | 298 (65.4) | 015 (057.7) | NS |
25-(OH) D3 (ng/mL) | 018.7 ± 5.5 | 17.2 ± 6.7 | NS |
Adequate > 30 | 010 (02.3) | 002 (07.7) | |
Moderate 20 ≤ and < 30 | 157 (35.6) | 006 (023.1) | χ2 = 11.5916 |
Low 10 ≤ and < 20 | 249 (56.6) | 013 (050.0) | p < 0.01 |
Deficient < 10 | 024 (05.5) | 005 (019.2) | |
Folate (ng/mL) | 07.82 ± 3.98 | 08.13 ± 5.06 | NS |
Normal ≥ 3 | 430 (97.7) | 022 (084.6) | χ2 = 14.4836 |
Low < 3 | 010 (02.3) | 004 (015.4) | p < 0.001 |
Homocysteine (μ mol/L) | 015.3 ± 4.3 | 023.1 ± 12.7 | p < 0.001< |
High > 17 | 120 (27.3) | 015 (057.7) | χ2 = 11.0397 |
Normal ≤ 17 | 320 (72.7) | 011 (042.3) | p < 0.001 |
hs-CRP (mg/L) | 01.43 ± 2.92 | 01.64 ± 2.36 | NS |
Very high > 3.0 | 039 (08.9) | 003 (011.5) | χ2 = 1.4537 |
High 1.0 < and ≤ 3.0 | 113 (25.7) | 009 (034.6) | |
Normal ≤ 1.0 | 288 (65.4) | 014 (053.9) | NS |
HBa1c (%) | 06.11 ± 0.59 | 06.07 ± 0.39 | NS |
High ≥ 6.5 | 053 (12.1) | 003 (011.5) | χ2 = 0.0060 |
Normal < 6.5 | 387 (87.9) | 023 (088.5) | NS |
DHEAS (μ g/dL) | 032.8 ± 28.6 | 027.1 ± 14.4 | NS |
IGF-1 (ng/mL) | 093.5 ± 44.0 | 088.9 ± 43.3 | NS |