Journal List > J Korean Med Assoc > v.49(12) > 1080597

Kim: Osteosarcoma: Biologic Markers in Its Treatment

Abstract

Osteosarcoma is a primary malignant bone tumor that accounts for 5% of childhood cancers. Despite the use of chemotherapy, long-term survival has reached a plateau, and this figure has not changed for almost 20 years. Therefore, there is a need for understanding of the basic biology and pathogenesis of osteosarcoma in order to develop more therapeutic strategies and ultimately improve survival. This article reviews current state of knowledge about several aspects of osteosarcoma biology with regard to host genetic predispositions, cytogenetics and molecular markers. Genetic conditions with a predisposition to osteosarcoma include hereditary retinoblastoma, Li-Fraumeni syndrome, Rothmund-Thomson syndrome and Werner syndrome. Although most of osteosarcomas are sporadic, these syndromes may provide important clues to the pathogenesis of sporadic osteosarcomas. A multitude of cytogenetic abnormalities have been detected, but no specific abnormalities that can serve as markers of osteosarcoma have been found. Areas of molecular aberrations include tumor suppressor pathway (RB and p53), oncogenes (Her-2), telomere maintenance, angiogenesis (VEGF), chemokines (CXCR4), cytoskeletons (Ezrin), matrix metalloproteinases and adhesion molecules (CD44). Understanding the contributions of the different cytogenetic and molecular aberrations will aid in discovering predictors of outcome and in devising therapies for osteosarcoma.

References

1. Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances in pediatric osteosarcoma. Oncologist. 2004. 9:422–441.
2. Wang L. Biology of osteogenic sarcoma. Cancer J. 2005. 11:294–305.
crossref
3. Sandberg A, Bridge J. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet. 2003. 145:1–30.
crossref
4. Ozaki T, Schaefer K, Wai D, Buerger H, Flege S, Lindner N, et al. Genetic imbalances revealed by comparative genomic hybridization in osteosarcomas. Int J Cancer. 2002. 102:355–365.
crossref
5. Wong F, Boice J, Abramson D. Cancer incidence retinoblastoma: radiation dose and sarcoma risk. JAMA. 1997. 278:1262–1267.
6. Wadayama B, Toguchida J, Shimizu T, Ishizaki K, Sasaki M, Kotoura Y, et al. Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res. 1994. 54:3042–3048.
7. Maelandsmo G, Berner J, Florens V. Homozyogous deletion frequency and expression levels of the CDKN2 gene in human sarcomas: relationship to amplification and mRNA levels of CDK4 and CCND1. Br J Cancer. 1995. 72:393–398.
crossref
8. Wei G, Lonardo F, Ueda T, Kim T, Huvos A, Healey J, et al. CDK4 gene amplification in osteosarcoma: reciprocal relationship with INK4A gene alterations and mapping of 12q13 amplicons. Int J Cancer. 1999. 80:199–204.
crossref
9. Hollenstein M, Sidransky D, Vogelstein B, Harris C. p53 mutations in human cancers. Science. 1991. 253:49–53.
crossref
10. Scholz R, Kabisch H, Weber B, Roser K, Delling G, Winkler K. Studies of the RB1 gene and the p53 gene in human osteosarcomas. Pediatr Hematol Oncol. 1992. 9:125–137.
11. Li F, Fraumeni J, Mulvihill J. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988. 48:5358–5362.
12. Gokgoz N, Wunder J, Mousses S, Eskandarian S, RS RB, Andrulis I. Comparison of p53 mutations in patients with localized osteosarcoma and metastatic osteosarcoma. Cancer. 2001. 92:2181–2189.
crossref
13. Wunder JS, Gokgoz N, Parkes R, Bull SB, Eskandarian S, Davis AM, Beauchamp CP, et al. TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol. 2005. 03. 01. 23:1483–1489.
crossref
14. Lonardo F, Ueda T, Huvos A. p53 and MDM2 alterations in osteosarcomas: correlation wiith clnicopathologic features and proliferative rate. Cancer. 1997. 79:1541–1547.
15. López-Guerrero JA, López-Ginés C, Pellín A, et al. Deregulation of the G1 to S-phase cell cycle checkpoint is involved in the pathogenesis of human osteosarcoma. Diagn Mol Pathol. 2004. 13:81–91.
crossref
16. Oh JH, Kim HS, Kim HH, Kim WH, Lee SH. Aberrant methylation of p14ARF gene correlates with poor survival in osteosarcoma. Clin Orthop Relat Res. 2006. 01. 442:216–222.
crossref
17. Fellenberg J, Krauthoff A, Pollandt K. Evaluation of the predictive value of Her-2/neu gene expression on osteosarcoma therapy in laser-microdissected paraffin-embedded tissue. Lab Invest. 2004. 84:113–121.
crossref
18. Scotlandi K, Manara MC, Hattinger CM, Benini S, Perdichizzi S, Serra M, et al. Prognostic and therapeutic relevance of HER2 expression in osteosarcoma and Ewing's sarcoma. Eur J Cancer. 2005. 41:1349–1361.
crossref
19. Gorlick R, Huvos AG, Heller G, Aledo A, Beardsley GP, Meyers PA, et al. Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol. 1999. 09. 17:2781–2788.
crossref
20. Kaya M, Wada T, Akatsuka T, Kawaguchi S, Nagoya S, Shindoh M, et al. Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. Clin Cancer Res. 2000. 6:572–577.
21. Charity R, Foukas A, Deshmukh N, Grimer R. Vascular endothelial growth factor expression in osteosarcoma. Clin Orthop. 2006. 448:193–198.
crossref
22. Guan H, Zhou Z, Wang H, Jia SF, Liu W, Kleinerman ES. A small interfering RNA targeting vascular endothelial growth factor inhibits Ewing's sarcoma growth in a xenograft mouse model. Clin Cancer Res. 2005. 04. 01. 11:2662–2669.
crossref
23. Perissinotto E, Cavalloni G, Leone F, Fonsato V, Mitola S, Grignani G, et al. Involovement of chemokine receptor 4/stromal cell-derived factor 1 system during osteosarcoma tumor progression. Clin Cancer Res. 2005. 11:490–497.
24. Laverdiere C, Hoang BH, Yang R, Sowers R, Qin J, Gorlick R, et al. Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma. Clin Cancer Res. 2005. 04. 01. 11:2561–2567.
crossref
25. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004. 10:182–186.
crossref
26. Bjorland K, Flatmark K, Pettersen S, Aaasen A, Fodstad O, Malandsmo G. Matrix metalloproteinases participate in osteosarcoma invasion. J Surg Res. 2005. 127:151–156.
crossref
27. Kim H, Park Y, Oh J, Jeong J, Kim C. Expression of CD44 isoforms correlates with the metastatic potential of osteosarcoma. Clin Orthop. 2002. 396:184–190.
crossref
28. Kloen P, Gebhardt MC, Perez-Atayde A, Rosenberg AE, Springfield DS, Mankin HJ, et al. Expression of transforming growth factor-beta (TGF-beta) isoforms in osteosarcomas: TGF-beta3 is related to disease progression. Cancer. 1997. 12. 15. 80:2230–2239.
crossref
29. Coltella N, Manara MC, Cerisano V, Trusolino L, Di Renzo MF, Ferracini R, et al. Role of the MET/HGF receptor in proliferation and invasive behavior of osteosarcoma. FASEB J. 2003. 06. 17. 17:1162–1164. Epub 2003 Apr 22.
crossref
30. Trieb K, Lehner R, Stulnig T, Sulzbacher I, Shroyer KR. Survivin expression in human osteosarcoma is a marker for survival. Eur J Surg Oncol. 2003. 05. 29:379–382.
crossref
31. Duan X, Jia SF, Zhou Z, Langley RR, Bolontrade MF, Kleinerman ES. Association of alphavbeta3 integrin expression with the metastatic potential and migratory and chemotactic ability of human osteosarcoma cells. Clin Exp Metastasis. 2004. 21:747–753.
crossref
TOOLS
Similar articles