Journal List > Ann Clin Microbiol > v.19(4) > 1078562

Song, Kim, Kim, Shin, Shin, and Park: Carbapenem Inactivation Method: Accurate Detection and Easy Interpretation of Carbapenemase Production in Enterobacteriaceae and Pseudomonas spp.

Abstract

Background

We evaluated the carbapenem inactivation method (CIM) compared with the modified Hodge test (MHT) for the detection of carbapene-mase-producing Gram-negative bacilli.

Methods

A total of 61 isolates of carbapenemase-producing Enterobacteriaceae (CPE: 14 KPC, 7 GES-5, 8 NDM-1, 9 VIM-2, 9 IMP-1, and 14 OXA-48-like), 34 isolates of metallo-β-lactamase (MBL)-producing Pseudomonas spp. (14 VIM-2 and 20 IMP-6), and 70 carbapenem-nonsusceptible carbapenemase-negative isolates were included. The CIM and MHT were performed for all of the isolates. To perform the CIM, a meropenem disk was incubated with a suspension of the isolate to be tested and then on Mueller-Hinton agar with the Escherichia coli ATCC 29522 strains. The absence of an inhibition zone indicates presence of a carbapenemase. The presence of a clearing zone indicates lack of a carbapenemase.

Results

The total sensitivity and specificity of CIM (96% sensitivity and 100% specificity) in carbapenem-nonsusceptible Enterobacteriaceae and Pseudomonas spp. were better than those of the MHT (77% sensitivity and 94% specificity). The interpretation of CIM results was easy, with no or <20 mm inhibition zones indicating positivity and >20 mm inhibition zones indicating negative carbapenemase activity.

Conclusion

The CIM had excellent sensitivity and specificity for detection of CPE and MBL-producing Pseudomonas spp., and a positive result was easily determined, unlike the MHT.

References

1. Patel JB, Rasheed JK, Kitchel B. Carbapenemases in Enterobacteriaceae: activity, epidemiology, and laboratory detection. Clin Microbiol Newsletter. 2009; 31:55–62.
crossref
2. Girlich D, Poirel L, Nordmann P. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol. 2012; 50:477–9.
crossref
3. Jeong SH, Song W, Bae IK, Kim HS, Kim JS, Park MJ, et al. Broth microdilution methods using B-lactamase inhibitors for the identification of Klebsiella pneumoniae carbapenemases and metallo-β-lactamases in Gram-negative bacilli. Ann Clin Lab Sci. 2014; 44:49–55.
4. Papagiannitsis CC, Študentová V, Izdebski R, Oikonomou O, Pfeifer Y, Petinaki E, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4 HCO3, a reliable tool for direct detection of carbapenemase activity. J Clin Microbiol. 2015; 53:1731–5.
5. CLSI. Performance standards for antimicrobial susceptibility testing. CLSI document M100-S23. Wayne, PA: Clinical and Laboratory Standards Institute;2013.
6. Anderson KF, Lonsway DR, Rasheed JK, Biddle J, Jensen B, McDougal LK, et al. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microbiol. 2007; 45:2723–5.
7. Pasteran F, Mendez T, Guerriero L, Rapoport M, Corso A. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol. 2009; 47:1631–9.
8. Pasteran F, Mendez T, Rapoport M, Guerriero L, Corso A. Controlling false-positive results obtained with the Hodge and Masuda assays for detection of class a carbapenemase in species of Enterobacteriaceae by incorporating boronic acid. J Clin Microbiol. 2010; 48:1323–32.
9. Carvalhaes CG, Picão RC, Nicoletti AG, Xavier DE, Gales AC. Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results. J Antimicrob Chemother. 2010; 65:249–51.
crossref
10. Doumith M, Ellington MJ, Livermore DM, Woodford N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother. 2009; 63:659–67.
crossref
11. Hirsch EB and Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother. 2010; 65:1119–25.
12. van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One. 2015; 10:e0123690.
crossref
13. Jeong S, Kim JO, Jeong SH, Bae IK, Song W. Evaluation of peptide nucleic acid-mediated multiplex realtime PCR kits for rapid detection of carbapenemase genes in gram-negative clinical isolates. J Microbiol Methods. 2015; 113:4–9.
crossref
14. Song W, Hong SG, Yong D, Jeong SH, Kim HS, Kim HS, et al. Combined use of the modified Hodge test and carbapenemase inhibition test for detection of carbapenemase-producing Enterobacteriaceae and metallo-β-lactamase-producing Pseudomonas spp. Ann Lab Med. 2015; 35:212–9.
crossref
15. Tijet N, Patel SN, Melano RG. Detection of carbapenemase activity in Enterobacteriaceae: comparison of the carbapenem inactivation method versus the Carba NP test. J Antimicrob Chemother. 2016; 71:274–6.
16. Yamada K, Kashiwa M, Arai K, Nagano N, Saito R. Comparison of the modified-hodge test, Carba NP test, and carbapenem inactivation method as screening methods for carbapenemase-producing Enterobacteriaceae. J Microbiol Methods. 2016; 128:48–51.
17. Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012; 18:1503–7.
18. Dortet L, Poirel L, Nordmann P. Rapid detection of carbapenemase-producing Pseudomonas spp. J Clin Microbiol. 2012; 50:3773–6.
crossref
19. Tijet N, Boyd D, Patel SN, Mulvey MR, Melano RG. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013; 57:4578–80.
crossref

Fig. 1.
Interpretation of carbapenem inactivation method (CIM). The positive results showed the absence of an inhibition zone (A) and the negative results appeared >20 mm of inhibition zone diameter (B).
acm-19-83f1.tif
Table 1.
Results of the CIM and MHT in carbapenem-nonsusceptible Enterobacteriaceae isolates
Organism (n) Carbapenemase (n) No. of positive results
CIM MHT
Carbapenemase producers (61)      
Citrobacter freundii (5) NDM-1 (1) 1 0
  VIM-2 (4) 4 4
Enterobacter aerogenes (1) IMP-1 1 1
Enterobacter cloacae (11) KPC-2 (1) 1 1
  NDM-1 (2) 2 0
  IMP-1 (5) 5 5
  VIM-2 (3) 3 2
Escherichia coli (7) KPC-2 (1) 1 1
  NDM-1 (1) 1 0
  OXA-232 (5) 4 4
Klebsiella oxytoca (3) NDM-1 (2) 2 2
  VIM-2 (1) 1 1
Klebsiella pneumoniae (32) KPC-2 (6) 6 6
  KPC-3 (6) 6 6
  GES-5 (7) 4 0
  NDM-1 (2) 2 0
  IMP-1 (1) 1 1
  VIM-2 (1) 1 1
  OXA-48 (1)* 1 1
  OXA-181 (1)* 1 1
  OXA-232 (7)* 7 7
Pantoea agglomerans (2) IMP-1 2 2
Non-carbapenemase producers (38)      
Citrobacter freundii (1) None 0 0
Enterobacter aerogenes (2) None 0 0
Enterobacter cloacae (5) None 0 2
Escherichia coli (6) None 0 0
Klebsiella oxytoca (2) None 0 0
Klebsiella pneumoniae (14) None 0 1
Serratia marcescens (8) None 0 1

*OXA-48, −181, and −232 belong to OXA-48-like. Abbreviations: CIM, carbapenem inactivation method; MHT, modified Hodge test.

Table 2.
Characteristics of the CIM and MHT in carbapenem-nonsusceptible Pseudomonas spp. isolates
Organism (n) Carbapenemase (n) No. of positive results
CIM MHT
Carbapenemase producers (34)      
Pseudomonas aeruginosa (31) IMP-6 (20) 20 20
  VIM-2 (11) 11 5
Pseudomonas putida (3) VIM-2 3 2
Non-carbapenemase producers (32)      
Pseudomonas aeruginosa None 0 0

Abbreviations: CIM, carbapenem inactivation method; MHT, modi-ied Hodge test.

Table 3.
Sensitivity and specificity of the CIM and MHT in carbapenem-nonsusceptible Gram-negative bacilli
Test Enterobacteriaceae Pseudomonas spp. Total
Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)
CIM 93.4 100 100 100 95.8 100
MHT 75.4 89.5 79.4 100 76.8 94.3

Abbreviations: CIM, carbapenem inactivation method; MHT, modified Hodge test.

TOOLS
Similar articles