Journal List > Ann Clin Microbiol > v.19(2) > 1078554

Ahn, Sung, Kim, Kim, Hwang, Jong, Seo, Ha, Park, Choi, Yong, and Lee: Molecular Epidemiology and Characterization of Carbapenemase-Producing Enterobacteriaceae Isolated at a University Hospital in Korea during 4-Year Period

Abstract

Background

Carbapenemase-producing Enterobacteriaceae (CPE) has been increasingly reported world-wide in the past 10 years, which is an important infection control concern. Since the epidemiology and characteristics of these CPEs vary according to in-stitutes, we aimed to characterize CPEs in a university hospital during the recent 4 years.

Methods

From October 2011 to September 2015, CPE isolates from clinical specimens and hospital surveillance cultures were collected. Carbapenem resistance was confirmed by disk diffusion method and Minimal Inhibitory Concentration (MIC) was determined by agar dilution method. Carbapenemase production was tested by double disk test using amino-phenylboronic acid and dipicolic acid. PCR and sequence analysis were performed to detect bla KPC, bla IMP-1, bla VIM-2, bla NDM-1-like genes and bla OXA-48 gene. Pulsed-field gel electrophoresis (PFGE) and Multilocus sequence typing (MLST) were conducted for KPC-producing Klebsiella pneumoniae isolates.

Results

Twenty-five isolates (11%) of CPE were identified among 222 carbapenem-resistant Entero-bacteriacae isolates during the study period. The most prevalent CPE was KPC-producing K. pneumonia and others were IMP-1, VIM-2, NDM-1 type and OXA-48 producing CPEs. Most of these CPEs showed resistance to carbapenems with variable MICs. The sequence types (STs) of KPC-producing K. pneumoniae were ST307 and ST11. The PFGE of ST11 and ST307 showed clonality in each group suggesting the possibility of in-hospital outbreak.

Conclusion

The prevalence of CPE has been increasing. In our institute, KPC-producing K. pneumoniae was the most frequently isolated CPE in the recent 4 years. CPE including KPC producers can easily transfer their resistance. Therefore continuous monitoring and more intensified infection control for CPE should be considered.

References

1. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011; 17:1791–8.
2. Pitout JD. Infections with extended-spectrum beta-lactamase-producing Enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs. 2010; 70:313–33.
3. CDC. Antibiotic Resistance Threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2013/. [Online] (last visited on 1 November 2015).
4. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009; 9:228–36.
crossref
5. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012; 25:682–707.
crossref
6. Park JW, Lee EJ, Lee DH. Status of carbapenemase producing Enterobacteriaceae in Korea, 2014. Public Health Weekly Report. 2016; 9:9–13.
7. Ko KS, Lee JY, Baek JY, Suh JY, Lee MY, Choi JY, et al. Predominance of an ST11 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae clone causing bacteraemia and urinary tract infections in Korea. J Med Microbiol. 2010; 59:822–8.
8. Kim SY, Shin J, Shin SY, Ko KS. Characteristics of carbapenem-resistant Enterobacteriaceae isolates from Korea. Diagn Microbiol Infect Dis. 2013; 76:486–90.
crossref
9. Kim MN, Yong D, An D, Chung HS, Woo JH, Lee K, et al. Nosocomial clustering of NDM-1-producing Klebsiella pneumoniae sequence type 340 strains in four patients at a South Korean tertiary care hospital. J Clin Microbiol. 2012; 50:1433–6.
crossref
10. CLSI. Performance standards for antimicrobial susceptibility testing: twenty-fifth informational supplement. CLSI document M100-S25. Wayne, PA: Clinical and Laboratory Standards Institute;2015.
11. Breakpoint tables for interpretation of MICs and zone diameters. EUCAST (The European Committee on Antimicrobial Susceptibility Testing). http://www.eucast.org/[Online. ] (last visited on 1 November 2015).
12. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005; 43:4178–82.
13. Gona F, Barbera F, Pasquariello AC, Grossi P, Gridelli B, Mezzatesta ML, et al. In vivo multiclonal transfer of bla KPC-3 from Klebsiella pneumoniae to Escherichia coli in surgery patients. Clin Microbiol Infect. 2014; 20:O633–5.
14. Goren MG, Carmeli Y, Schwaber MJ, Chmelnitsky I, Schechner V, Navon-Venezia S. Transfer of carbapenem-resistant plasmid from Klebsiella pneumoniae ST258 to Escherichia coli in patient. Emerg Infect Dis. 2010; 16:1014–7.
15. Tijet N, Muller MP, Matukas LM, Khan A, Patel SN, Melano RG. Lateral dissemination and inter-patient transmission of bla KPC-3: role of a conjugative plasmid in spreading carbapenem resistance. J Antimicrob Chemother. 2016; 71:344–7.
16. Mathers AJ, Cox HL, Kitchel B, Bonatti H, Brassinga AK, Carroll J, et al. Molecular dissection of an outbreak of carbapenem-resistant Enterobacteriaceae reveals intergenus KPC carbapenemase transmission through a promiscuous plasmid. MBio. 2011; 2:e00204–11.
crossref
17. Richter SN, Frasson I, Bergo C, Parisi S, Cavallaro A, Palù G. Transfer of KPC-2 carbapenemase from Klebsiella pneumoniae to Escherichia coli in a patient: first case in Europe. J Clin Microbiol. 2011; 49:2040–2.
crossref
18. Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 2014; 22:686–96.
crossref
19. Monaco M, Giani T, Raffone M, Arena F, Garcia-Fernandez A, Pollini S. Colistin resistance superimposed to endemic carbapenem-resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, November 2013 to April 2014. Euro Surveill. 2014; 19.
crossref
20. Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother. 2015; 70:2133–43.
crossref
21. Miriagou V, Cornaglia G, Edelstein M, Galani I, Giske CG, Gniadkowski M, et al. Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect. 2010; 16:112–22.
crossref
22. Docquier JD, Calderone V, De Luca F, Benvenuti M, Giuliani F, Bellucci L, et al. Crystal structure of the OXA-48 beta-lactamase reveals mechanistic diversity among class D carbapenemases. Chem Biol. 2009; 16:540–7.
23. Doi Y and Paterson DL. Carbapenemase-producing Enterobacteriaceae. Semin Respir Crit Care Med. 2015; 36:74–84.
crossref
24. Song W, Jeong SH, Lee J, Lee SS, Lee K. Emergence and spread of OXA-48-like carbapenemase-producing Enterobacteriaceae. Korean J Nosocomial Infect Control. 2015; 20:7–18.
crossref
25. Chen L, Chavda KD, Mediavilla JR, Zhao Y, Fraimow HS, Jenkins SG, et al. Multiplex realtime PCR for detection of an epidemic KPC-producing Klebsiella pneumoniae ST258 clone. Antimicrob Agents Chemother. 2012; 56:3444–7.
crossref
26. Wang Q, Li B, Tsang AK, Yi Y, Woo PC, Liu CH. Genotypic analysis of Klebsiella pneumoniae isolates in a Beijing Hospital reveals high genetic diversity and clonal population structure of drug-resistant isolates. PLoS One. 2013; 8:e57091.
crossref
27. Damjanova I, Tóth A, Pászti J, Hajbel-Vékony G, Jakab M, Berta J, et al. Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type beta-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005–the new ‘MRSAs’? J Antimicrob Chemother. 2008; 62:978–85.
28. Qi Y, Wei Z, Ji S, Du X, Shen P, Yu Y. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother. 2011; 66:307–12.
crossref
29. Castanheira M, Farrell SE, Wanger A, Rolston KV, Jones RN, Mendes RE. Rapid expansion of KPC-2-producing Klebsiella pneumoniae isolates in two Texas hospitals due to clonal spread of ST258 and ST307 lineages. Microb Drug Resist. 2013; 19:295–7.
crossref
30. Park DJ, Yu JK, Park KG, Park YJ. Genotypes of ciprofloxacin-resistant Klebsiella pneumoniae in Korea and their characteristics according to the genetic lineages. Microb Drug Resist. 2015; 21:622–30.
31. Johnson JK, Arduino SM, Stine OC, Johnson JA, Harris AD. Multilocus sequence typing compared to pulsed-field gel electrophoresis for molecular typing of Pseudomonas aeruginosa. J Clin Microbiol. 2007; 45:3707–12.
32. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995; 33:2233–9.
crossref

Fig. 1.
The number of carbapenemase-producing Enterobacteriaceae isolates and carbapenemase types reported annually.
acm-19-39f1.tif
Fig. 2.
KPC-producing Klebsiella pneumoniae dendrogram based on Pulsed-field gel electrophoresis (PFGE) pattern and their sequence type. Abbreviation: ST, sequence type.
acm-19-39f2.tif
Table 1.
Primers used for carbapenemase gene PCR
Gene Primer sequence Amplicon size
KPC Forward TGGACACACCCATCCGTTAC 500 bp
  Reverse GACGGCCAACACAATAGGTG  
VIM Forward TTTGATTGATACAGCGTGG 459 bp
  Reverse TGCTTCCGGGTAGTG  
IMP Forward CATGGTTTGGTGGTTCTTGT 448 bp
  Reverse ATAATTTGGCGGACTTTGGC  
NDM Forward CAATATTATGCACCCGGTCG 726 bp
  Reverse ATCATGCTGGCCTTGGGGAA  
OXA Forward TTGGTGGCATCGATTATCGG 744 bp
  Reverse GAGCACTTCTTTTGTGATGG  
Table 2.
Gene loci included in the Klebsiella pneumoniae Multilocus sequence typing scheme and PCR primers
Locus Putative function of gene Primer sequence Size (bp) Number of alleles
rpoB Beta-subunit of RNA polymerase B (F) VIC3: GGCGAAATGGCWGAGAACCA 501 8
    (R) VIC2: GAGTCTTCGAAGTTGTAACC    
gapA Glyceraldehyde 3-phosphate (F) 173: TGAAATATGACTCCACTCACGG 450 6
  dehydrogenase (R) 181: CTTCAGAAGCGGCTTTGATGGCTT    
mdh Malate dehydrogenase (F) 130: CCCAACTCGCTTCAGGTTCAG 477 10
    (R) 867: CCGTTTTTCCCCAGCAGCAG    
pgi Phosphoglucose isomerase (F) 1R: GAGAAAAACCTGCCTGTACTGCTGGC 432 6
    (R) IF: CGCGCCACGCTTTATAGCGGTTAAT    
phoE Phosphoporine E (F) 604.1: ACCTACCGCAACACCGACTTCTTCGG 420 14
    (R) 604.2: TGATCAGAACTGGTAGGTGAT    
infB Translation initiation factor 2 (F) 1F: CTCGCTGCTGGACTATATTCG 318 10
    (R) 1R: CGCTTTCCAGCTCAAGAACTTC    
tonB Periplasmic energy transducer (F) 1F: CTTTATACCTCGGTACATCAGGTT 414 21
    (R) 2R: ATTCGCCGGCTGRGCRGAGAG    

Abbreviations: (F), forward; (R), reverse.

Table 3.
Clinical features of 25 carbapenemase-producing Enterobacteriaceae isolates
Isolate Year Age Sex Admitted from Reason for Admission Interval from admission to positive culture (days) Source Infection or colonization Outcome
1 2011 74 F Home Congestive heart failure 16 Blood Infection Expired
2 2011 55 F Home Pulmonary thromboembolism 23 Urine Colonization Expired
3 2013 57 M Home Hematochezia 3 Blood Infection Expired
4 2013 72 M Home Dyspnea 6 Sputum Infection Expired
5 2013 56 M Home Hepatocellular carcinoma 4 Blood Infection Discharged
6 2014 61 F Home Vesicovaginal fistula 133 Urine Infection Discharged
7 2014 84 F Hospital A Perforation of small bowel 2 Blood Infection Expired
8 2014 73 M Home Intracranial hemorrhage 0 Sputum Colonization Discharged
9 2014 72 M Hospital B Quadriplegia 72 Sputum Infection Transfered
10 2015 81 M Home Aspiration pneumonia 129 Endotracheal aspirate Colonization Expired
11 2015 60 F Home Lateral medullary infarction 12 Sputum Colonization Discharged
12 2015 47 M Hospital C Brain death donor 0 Endotracheal tube tip Colonization Expired
13 2015 69 F Hospital C Hematochezia 5 Drainage Buttock Infection Transfered
14 2015 70 M Hospital D Middle cerebral artery infarction 28 Peritoneal fluid Infection Discharged
15 2015 78 M Home Traumatic subdural hemorrhage 77 Stool CRE culture Colonization Transfered
16 2015 0 F Hospital E Neonatal jaundice 0 Stool CRE culture Colonization Discharged
17 2015 70 M Hospital D Middle cerebral artery infarction 79 Stool CRE culture Colonization Discharged
18 2015 52 F Home Choroid plexus carcinoma 53 Urine Colonization Discharged
19 2015 23 F Hospital F Tuberculous meningoencephalitis 21 Urine Colonization Transfered
20 2015 71 M Home Acute pulmonary edema 3 Drainage Foot Colonization Discharged
21 2015 1 F Home Sepsis 22 Stool CRE culture Colonization Discharged
22 2015 55 M Home Klatskin's tumor 48 Bile Infection Discharged
23 2015 57 F Hospital G Pancreatic cancer, head 30 Bile Infection Discharged
24 2015 48 F Hospital H Cellulitis 13 Urine Colonization On admission
25 2015 68 M Home Hepatocellular carcinoma 31 Stool CRE culture Colonization Discharged
Table 4.
Antimicrobial susceptibility, sequence type and plasmid characteristics of 25 carbapenemase-producing Enterobacteriaceae isolates
acm-19-39f3.tif
TOOLS
Similar articles