Journal List > Ann Clin Microbiol > v.19(4) > 1078548

Yu, Lee, and Hwang: Taxonomic Identification of Bacillus Species Using Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry

Abstract

Background

In this study, we compared various methods of taxonomic identification of Bacillus strains: biochemical methods, 16S rRNA gene sequencing, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). We also developed a pathogen-isolate resource database, thus increasing the identification rate when using MALDI-TOF MS.

Methods

Thirty Bacillus strains were obtained from the NCCP (National Culture Collection for Pathogens) and were identified using the VITEK 2 system (bio-Mérieux, France), API kit (bioMérieux, France), 16S rRNA gene sequencing, and MALDI-TOF MS. The pathogenicity of Bacillus cereus was confirmed through the identification of virulent genes using a multiplex PCR, and both protein extraction for protein profiling in MALDI-TOF MS and repetitive-sequence fingerprinting were performed.

Results

The identification rates at the species level were 40%, 80%, and 76.3% for the VITEK 2 system (bioMérieux), 16S rRNA gene sequencing, and MALDI-TOF MS, respectively. When the major spectrum-profiling dendrogram was compared with the phylogenetic tree, which was constructed based on the 16S rRNA gene sequences and rep-PCR fingerprinting, the classifications were confirmed to be effective.

Conclusion

Identification of Bacillus strains using MALDI-TOF MS was more effective than that using the VITEK 2 system (bioMérieux), but was similar to that using 16S rRNA gene sequencing. Continual addition to a proteome-based database can result in increased identification rates for MALDI-TOF MS.

References

1. Oguntoyinbo FA. Monitoring of marine bacillus diversity among the bacteria community of sea water. Afr J Biotechnol. 2007; 6:163–6.
2. Durak MZ, Fromm HI, Huck JR, Zadoks RN, Boor KJ. Development of molecular typing methods for Bacillus spp. and Paenibacillus spp. isolated from fluid milk products. J Food Sci. 2006; 71:M50–6.
crossref
3. Fritze D. Taxonomy of the genus bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology. 2004; 94:1245–8.
crossref
4. Bavykin SG, Lysov YP, Zakhariev V, Kelly JJ, Jackman J, Stahl DA, et al. Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. J Clin Microbiol. 2004; 42:3711–30.
5. Granum PE. Bacillus cereus. Doyle MP, editor. Food Microbiology: Fundamental and Frontiers. 2nd ed.Washington DC: ASM Press;2001. p. 373–81.
crossref
6. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998; 62:775–806.
7. Salkinoja-Salonen M, Vuorio R, Andersson M, Kampfer P, Honkanen-Buzalski T. Toxigenic strains of Bacillus licheniformis related to food poisoning. Appl Environ Microbiol. 1999; 65:4637–45.
8. Sorokulova IB, Reva ON, Smirnov VV, Pinchuk IV, Lapa SV, Urdaci MC. Genetic diversity and involvement in bread spoilage of Bacillus strains isolated from flour and ropy bread. Lett Appl Microbiol. 2003; 37:169–73.
crossref
9. Pavic S, Brett M, Petric I, Lastre D, Smoljanovic M, Atkinson M, et al. An outbreak of food poisoning in a kindergarten caused by milk powder containing toxigenic Bacillus subtilis and Bacillus licheniformis. Archiv für Lebensmittelhygiene. 2005; 56:20–2.
10. Jamal W, Albert MJ, Rotimi VO. Realtime comparative evaluation of bioMerieux VITEK MS versus Bruker Microflex MS, two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry systems, for identification of clinically significant bacteria. BMC Microbiol. 2014; 14:289.
crossref
11. CLSI. Interpretative criteria for identification of bacteria and fungi by DNA target sequencing; approved guideline. CLSI document MM18-A. Pennsylvania: Clinical and Laboratory Standards Institute;2008. p. 1–71.
12. Christner M, Trusch M, Rohde H, Kwiatkowski M, Schlüter H, Wolters M, et al. Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-toxigenic Escherichia coli. PLoS One. 2014; 9:e101924.
crossref
13. Josten M, Reif M, Szekat C, Al-Sabti N, Roemer T, Sparbier K, et al. Analysis of the matrix-assisted laser desorption ionization-time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages. J Clin Microbiol. 2013; 51:1809–17.
crossref
14. Khot PD and Fisher MA. Novel approach for differentiating Shigella species and Escherichia coli by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013; 51:3711–6.
15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. Introducing EzTaxone-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012; 62:716–21.
16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30:2725–9.
crossref
17. Kumar S, Tamura K, Nei M. MEGA3: intergrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004; 5:150–63.
18. Jukes TH and Cantor CR. Evolution of Protein Molecules. Munro HN, editor. Mammalian Protein Metabolism. New York: Academic Press;1969. p. 21–132.
19. Saitou N and Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4:406–25.
20. Haigh J, Degun A, Eydmann M, Millar M, Wilks M. Improved performance of bacterium and yeast identification by a commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry system in the clinical microbiology laboratory. J Clin Microbiol. 2011; 49:3441.
crossref
21. Schulthess B, Bloemberg GV, Zbinden R, Böttger EC, Hombach M. Evaluation of the bruker MALDI biotyper for identification of gram-positive rods: development of a diagnostic algorithm for the clinical laboratory. J Clin Microbiol. 2014; 52:1089–97.
crossref
22. Healy M, Huong J, Bittner T, Lising M, Frye S, Raza S, et al. Microbial DNA typing by automated repetitive-sequence-based PCR. J Clin Microbiol. 2005; 4:199–207.
crossref
23. Stanford TE, Bagley CJ, Solomon PJ. Informed baseline subtraction of proteomic mass spectrometry data aided by a novel sliding window algorithm. Proteome Sci. 2016; 14:19.
crossref
24. Dupont C, Sivadon-Tardy V, Bille E, Dauphin B, Beretti JL, Alvarez AS, et al. Identification of clinical coagulase-negative staphylococci, isolated in microbiology laboratories, by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and two automated systems. Clin Microbiol Infect. 2010; 16:998–1004.
crossref
25. Benagli C, Demarta A, Caminada A, Ziegler D, Petrini O, Tonolla M. A rapid MALDI-TOF MS identification database at geno-species level for clinical and environmental Aeromonas strains. PLoS One. 2012; 7:e48441.
crossref
26. Lista F, Reubsaet FA, De Santis R, Parchen RR, de Jong AL, Kieboom J, et al. Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS. BMC Microbiol. 2011; 11:267.
crossref
27. Lasch P, Beyer W, Nattermann H, Stämmler M, Siegbrecht E, Grunow R, et al. Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks. Appl Environ Microbiol. 2009; 75:7229–42.

Fig. 1.
Representative spectra from Bacillus strains supplemented in the database by MALDI-TOF MS. The intensity is shown as a percentage of the total intensity on the y-axis, and the mass to charge ration (m/z) is shown on the x-axis. (A) Bacillus cereus NCCP10841 DSMZ32. (B) B. cereus NCCP14796 entFM, CER. (C) B. cereus NCCP15909 entFM, nheA, cytK. (D) B. thuringiensis NCCP11234.(E) B. subtillis NCCP10908. (F) B. licheniformis NCCP11231.
acm-19-110f1.tif
acm-19-110f2.tif
Fig. 2.
Major spectrum profile (MSP) dendrogram of Bacillus strains supplemented in the database.
acm-19-110f3.tif
Fig. 3.
Comparison of 16S rRNA gene, repetitive-sequence based PCR fingerprinting and MALDI-TOF MS analysis in Bacillus strains. Phylogenetic tree based by 16S rRNA gene with UPGMA method (A), rep-PCR fingerprinting (B) and MALDI-TOF MS (C).
acm-19-110f4.tif
Table 1.
Bacillus strains used in this study. Pathotypes and serotypes were determined by performing agglutination tests and PCR
NCCP no. Identified Species Chracteristics Soruce
10084 Bacillus cereus ATCC 11778 ATCC
10190 Bacillus cereus ATCC 13061 ATCC
10623 Bacillus cereus ATCC 14893 ATCC
10624 Bacillus cereus ATCC 19637 ATCC
10634 Bacillus cereus ATCC 9818 ATCC
10715 Bacillus cereus ATCC 21928 ATCC
10821 Bacillus cereus ATCC 11950 ATCC
10841 Bacillus cereus ATCC 14579 (Type) DSMZ
10856 Bacillus cereus ATCC 9139 ATCC
10888 Bacillus cereus ATCC 27348 ATCC
14043 Bacillus cereus entFM nheA cytK Clinical isolate
14796 Bacillus cereus entFM CER Clinical isolate
15909 Bacillus cereus entFM nheA cytK Clinical isolate
15910 Bacillus cereus entFM nheA Clinical isolate
15938 Bacillus infantis N37281 Clinical isolate
11231 Bacillus licheniformis ATCC 14580 (Type) ATCC
12389 Bacillus licheniformis ATCC 9945A ATCC
10144 Bacillus pumilus ATCC 14884 ATCC
10192 Bacillus pumilus ATCC 27142 ATCC
10668 Bacillus subtilis subsp. subtilis ATCC 6051 (Type) ATCC
10736 Bacillus subtilis ATCC 7058 ATCC
10857 Bacillus subtilis ATCC 19659 ATCC
10866 Bacillus subtilis ATCC 11774 ATCC
10908 Bacillus subtilis ATCC 7058 ATCC
11101 Bacillus subtilis subsp. spizizenii ATCC 6633 ATCC
11234 Bacillus thuringiensis ATCC 10792 (Type) ATCC
12836 Bacillus thuringiensis ATCC 39756 ATCC
12837 Bacillus thuringiensis ATCC 13366 ATCC
14741 Bacillus spp. 77073 Clinical isolate
15922 Bacillus spp. KBN06P03352 Clinical isolate
Table 2.
Comparative identification rates of Bacillus strains by conventional method, 16S rRNA gene and MALDI-TOF MS
acm-19-110f5.tif
TOOLS
Similar articles