Journal List > Ann Clin Microbiol > v.17(2) > 1078511

Kweon, Kim, Kim, Lee, Jeong, and Kim: Characterization of Salmonella spp. Clinical Isolates in Gyeongsangbuk-do Province, 2012 to 2013

초록

Background

Extended-spectrum cephalosporins and fluoroquinolones are important antimicrobials for treat-ing invasive salmonellosis, and emerging resistance to these antimicrobials is of paramount concern.

Methods

A total of 30 Salmonella spp. clinical isolates recovered in Gyeongsangbuk-do from 2012 to 2013 were characterized using antibiotic resistance profiles and pulsed-field gel electrophoresis (PFGE).

Results

A high prevalence of multidrug-resistant isolates, mainly showing an ampicillin, nalidixic acid, chloramphenicol resistance pattern, was observed. Four extended-spectrum β-lactamase (ESBL)-producing isolates (3 CTX-M-15 isolates and 1 CTX-M-27 iso-late) were found. The blaCTX-M-27 gene was carried by an IncF conjugative plasmid in the S. Infantis isolate. The blaCTX-M-15 gene were carried by an IncF (2 isolates) or IncHI2 (1 isolate) conjugative plasmid in S. Enteritidis. In addition, a single mutation of GyrA, Ser83Thr (1 isolates), Asp87Tyr (9 isolates), Asp87Gly (4 isolates), and Asp87Leu (3 isolates), was detected in nalidixic acid-resistant Salmonella spp. isolates. XbaI PFGE analysis of all isolates revealed more than 19 different pulsotypes. The most common S. Enteritidis PFGE pattern (SEGX01.003) was associated with a larger number of cases of invasive salmonellosis than all other patterns.

Conclusion

The information from our study can as-sist in source attribution, outbreak investigations, and tailoring of interventions to maximize disease prevention.

REFERENCES

1.Khakhria R., Woodward D., Johnson WM., Poppe C. Salmonella isolated from humans, animals and other sources in Canada, 1983-92. Epidemiol Infect. 1997. 119:15–23.
2.Jones TF., Ingram LA., Cieslak PR., Vugia DJ., Tobin-D'Angelo M., Hurd S, et al. Salmonellosis outcomes differ substantially by serotype. J Infect Dis. 2008. 198:109–14.
crossref
3.Mermin J., Hutwagner L., Vugia D., Shallow S., Daily P., Bender J, et al. Emerging Infections Program FoodNet Working Group. Reptiles, amphibians, and human Salmonella infection: a population- based, case-control study. Clin Infect Dis. 2004. 38(Suppl 3):S253–61.
4.Kimura AC., Reddy V., Marcus R., Cieslak PR., Mohle-Boetani JC., Kassenborg HD, et al. Emerging Infections Program FoodNet Working Group. Chicken consumption is a newly identified risk factor for sporadic Salmonella enterica serotype Enteritidis infections in the United States: a case-control study in FoodNet sites. Clin Infect Dis. 2004. 38(Suppl 3):S244–52.
5.Scallan E., Hoekstra RM., Angulo FJ., Tauxe RV., Widdowson MA., Roy SL, et al. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis. 2011. 17:7–15.
crossref
6.Gatto AJ., Peters TM., Green J., Fisher IS., Gill ON., O'brien SJ, et al. Distribution of molecular subtypes within Salmonella enterica serotype Enteritidis phage type 4 and S. Typhimurium definitive phage type 104 in nine European countries, 2000-2004: results of an international multi-centre study. Epidemiol Infect. 2006. 134:729–36.
7.Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001. 14:933–51.
8.Oteo J., Aracil B., Alós JI., Gómez-Garcés JL. High rate of resistance to nalidixic acid in Salmonella enterica: its role as a marker of resistance to fluoroquinolones. Clin Microbiol Infect. 2000. 6:273–6.
9.McEwen SA., Fedorka-Cray PJ. Antimicrobial use and resistance in animals. Clin Infect Dis. 2002. 34(Suppl 3):S93–106.
crossref
10.Ewing WH. Edwards and Ewing's identification of Enterobacteriaceae. New York; Elsevier Science Publishing Co. Inc. 1986.
11.CLSI. Performance standards for antimicrobial susceptibility testing: twentieth informational supplement. Document M100-S20. Wayne, PA; Clinical and Laboratory Standards Institute. 2010.
12.Kim JY., Jeon SM., Rhie HG., Lee BK., Park MS., Lee H, et al. Rapid detection of extended spectrum β-lactamase (ESBL) for Enterobacteriaceae by use of a multiplex PCR-based method. Infect Chemother. 2009. 41:181–4.
13.Kim JS., Kim J., Kim SJ., Jeon SE., Oh KH., Cho SH, et al. Characterization of CTX-M-type extended-spectrum beta-lactamase- producing diarrheagenic Escherichia coli isolates in the Republic of Korea during 2008-2011. J Microbiol Biotechnol. 2014. 24:421–6.
14.Carattoli A., Bertini A., Villa L., Falbo V., Hopkins KL., Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005. 63:219–28.
crossref
15.Casin I., Breuil J., Darchis JP., Guelpa C., Collatz E. Fluoroquinolone resistance linked to GyrA, GyrB, and ParC mutations in Salmonella enterica Typhimurium isolates in humans. Emerg Infect Dis. 2003. 9:1455–7.
16.CDC. Standardized laboratory protocol for molecular subtyping of Escherchia coli O157:H7, non-typhoidal Salmonella serotypes, and Shigella sonnei by Pulse-Field Gel Electrophoresis (PFGE). http://www.pulsenetinternational.org/assets/PulseNet/uploads/pfge/PNL05_Ec-Sal-ShigPFGEprotocol.pdf. [Online.] (last visited on 04 April 2014).
17.Hohmann EL. Nontyphoidal salmonellosis. Clin Infect Dis. 2001. 32:263–9.
18.Biedenbach DJ., Toleman M., Walsh TR., Jones RN. Analysis of Salmonella spp. with resistance to extended-spectrum cephal-osporins and fluoroquinolones isolated in North America and Latin America: report from the SENTRY Antimicrobial Surveillance Program (1997-2004). Diagn Microbiol Infect Dis. 2006. 54:13–21.
19.KARMS. Korean Antimicrobial Resistance Monitoring System. KCDC. 2011.
20.Colom K., Pérez J., Alonso R., Fernández-Aranguiz A., Lariño E., Cisterna R. Simple and reliable multiplex PCR assay for detection of bla TEM, bla SHV and bla OXA-1 genes in Enterobacteriaceae. FEMS Microbiol Lett. 2003. 223:147–51.
21.Melano R., Corso A., Petroni A., Centrón D., Orman B., Pereyra A, et al. Multiple antibiotic-resistance mechanisms including a novel combination of extended-spectrum beta-lactamases in a Klebsiella pneumoniae clinical strain isolated in Argentina. J Antimicrob Chemother. 2003. 52:36–42.
22.Hopkins KL., Liebana E., Villa L., Batchelor M., Threlfall EJ., Carattoli A. Replicon typing of plasmids carrying CTX-M or CMY beta-lactamases circulating among Salmonella and Escherichia coli isolates. Antimicrob Agents Chemother. 2006. 50:3203–6.
23.Tamang MD., Nam HM., Kim TS., Jang GC., Jung SC., Lim SK. Emergence of extended-spectrum beta-lactamase (CTX-M-15 and CTX-M-14)-producing nontyphoid Salmonella with reduced susceptibility to ciprofloxacin among food animals and humans in Korea. J Clin Microbiol. 2011. 49:2671–5.
24.Drlica K., Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev. 1997. 61:377–92.
crossref

Fig. 1.
Clustering of XbaI digested PFGE patterns for Salmonella spp..
acm-17-50f1.tif
Table 1.
MIC50 and MIC90 of antibiotics for Salmonella spp. isolates (n=30)
Antibiotics Breakpoints MIC50(μ g/mL) MIC90(μ g/mL) No. (%) of isolates
S I R
Ampicillin S≤8 R≥32 128 128 12 (40) 0 18 (60)
Ceftriaxone S≤1 R≥4 0.06 64 26 (86.7) 0 4 (13.3)
Cefotaxime S≤1 R≥4 0.06 8 26 (86.7) 0 4 (13.3)
Cefoxitin S≤8 R≥32 0.5 4 30 (100) 0 0
Ampicillin/Sulbactam S≤8 R≥32 16 32 12 (40) 8 (26.7) 10 (33.3)
Amoxicillin/Clavulanic acid S≤8 R≥32 8 16 25 (83.3) 5 (16.7) 0
Imipenem S≤1 R≥4 0.06 0.06 30 (100) 0 0
Amikacin S≤16 R≥64 0.5 0.5 30 (100) 0 0
Gentamicin S≤4 R≥16 0.5 64 24 (80) 0 6 (20)
Nalidixic acid S≤16 R≥32 256 256 13 (43.3) 0 17 (56.7)
Ciprofloxacin S≤1 R≥4 0.06 0.25 30 (100) 0 0
Tetracycline S≤4 R≥16 0.5 128 23 (76.7) 0 7 (23.3)
Chloramphenicol S≤8 R≥32 8 64 19 (63.3) 0 11 (36.7)
Trimethoprim/Sulfamethoxazole S≤2 R≥4 1 1 28 (93.3) 0 2 (6.7)
Table 2.
MICs of Salmonella spp. isolates
Strain Serotype MICs (μ g/mL) of antibiotics
AMP CRO CTX FOX SAM AMC IMP AMK GEN NAL CIP TCY CHL SXT
1 Typhi 0.5 0.06 0.06 4 1 1 0.06 0.5 0.5 0.5 0.06 0.5 4 1
2 Typhimurium 128 0.06 0.06 0.5 16 (I) 8 0.06 0.5 0.5 256 0.5 256 8 1
3 Sandiego 0.5 0.06 0.06 0.5 1 1 0.06 0.5 0.5 4 0.06 0.5 8 1
4 Enteritidis 128 0.06 0.06 0.05 32 8 0.06 0.5 0.5 256 0.06 0.5 64 1
5 Enteritidis 128 0.06 0.06 0.5 32 8 0.06 0.5 0.5 256 0.25 0.5 64 1
6 Enteritidis 128 64 8 0.5 16 8 0.06 0.5 64 256 0.25 64 4 1
7 Enteritidis 128 0.06 0.06 0.5 16 8 0.06 0.5 0.5 256 0.25 0.5 64 1
8 Senftenberg 0.5 0.06 0.06 4 1 1 0.06 0.5 0.5 4 0.06 0.5 8 1
9 Typhimurium 128 0.06 0.06 0.5 32 8 0.06 0.5 16 4 0.06 128 4 1
10 Enteritidis 128 64 8 0.5 16 8 0.06 0.5 64 256 0.25 128 8 1
11 Typhimurium 0.5 0.06 0.06 0.5 1 1 0.06 0.5 0.5 4 0.06 0.5 8 1
12 Enteritidis 0.5 0.06 0.06 0.5 1 1 0.06 0.5 0.5 256 0.06 0.5 8 1
13 Enteritidis 128 0.06 0.06 0.5 32 16 0.06 0.5 0.5 256 0.06 0.5 64 1
14 Enteritidis 0.5 0.06 0.06 0.5 1 1 0.06 0.5 0.5 256 0.25 0.5 8 1
15 Typhimurium 0.5 0.06 0.06 0.5 2 1 0.06 0.5 0.5 256 0.5 0.5 8 1
16 Enteritidis 128 0.06 0.06 0.5 32 16 0.06 0.5 0.5 256 0.25 0.5 64 1
17 Bardo 0.5 0.06 0.06 0.5 2 2 0.06 0.5 0.5 4 0.06 0.5 8 1
18 Enteritidis 128 0.06 0.06 0.5 32 8 0.06 0.5 0.5 128 0.06 0.5 64 1
19 Thomson 0.5 0.06 0.06 0.5 2 2 0.06 0.5 0.5 4 0.06 0.5 8 1
20 Paratyphi B 128 0.06 0.06 0.5 32 16 0.06 0.5 0.5 0.5 0.06 32 64 1
21 Infantis 128 64 8 4 64 16 0.06 0.5 0.5 4 0.06 0.5 8 32
22 Paratyphi B 128 0.06 0.06 0.5 16 8 0.06 0.5 0.5 256 0.25 0.5 64 1
23 Enteritidis 128 0.06 0.06 0.5 16 8 0.06 0.5 0.5 256 0.06 0.5 64 1
24 Typhimurium 128 0.06 0.06 4 16 8 0.06 0.5 64 256 0.5 4 64 32
25 Typhimurium 0.5 0.06 0.06 4 1 1 0.06 0.5 0.5 4 0.06 0.5 8 1
26 Typhimurium 0.5 0.06 0.06 4 1 1 0.06 0.5 0.5 4 0.06 0.5 8 1
27 Enteritidis 128 0.06 0.06 0.5 32 8 0.06 0.5 0.5 256 0.25 0.5 64 1
28 Enteritidis 128 64 8 0.5 16 4 0.06 0.5 64 256 0.25 128 8 1
29 Stanley 0.5 0.06 0.06 0.5 1 1 0.06 0.5 0.5 0.5 0.06 0.5 8 1
30 Typhimurium 128 0.06 0.06 0.5 64 16 0.06 0.5 128 8 0.06 256 8 1

Abbreviations: AMP, Ampicillin; CRO, Ceftriaxone; CTX, Cefotaxime; FOX, Cefoxitin; SAM, Ampicillin/Sulbactam; AMC, Amoxicillin/ Clavulanic acid; IMP, Imipenem; AMK, Amikacin; GEN, Gentamicin; NAL, Nalidixic acid; CIP, Ciprofloxacin; TCY, Tetracycline; CHL, Chloramphenicol; SXT, Trimethoprim/Sulfamethoxazole. Values in boldface indicate higher value than the breakpoint of CLSI.

Table 3.
Molecular characteristics of Salmonella spp. resistant to third-generation cephalosporins and quinolones
Strain Serotype bla CTX-M gene Other bla gene Plasmid replicon Mutations in QRDR
gyrA parC
2 S. Typhimurium Asp87→ Leu
4 S. Enteritidis Asp87→ Tyr
5 S. Enteritidis Asp87→ Tyr
6 S. Enteritidis CTX-M-15 IncHI2 Asp87→ Tyr
7 S. Enteritidis Asp87→ Tyr
10 S. Enteritidis CTX-M-15 IncF Asp87→Tyr
12 S. Enteritidis Asp87→ Gly
13 S. Enteritidis Asp87→ Gly
14 S. Enteritidis Asp87→ Tyr
15 S. Typhimurium Asp87→ Leu
16 S. Enteritidis Asp87→ Tyr
18 S. Enteritidis Asp87→Gly
21 S. Infantis CTX-M-27 TEM-1 IncF
22 S. Paratyphi B Ser83→ Thr
23 S. Enteritidis Asp87→ Gly
24 S. Typhimurium Asp87→ Leu
27 S. Enteritidis Asp87→ Tyr
28 S. Enteritidis CTX-M-15 IncF Asp87→ Tyr
TOOLS
Similar articles