Journal List > Ann Clin Microbiol > v.16(3) > 1078476

Yoon: Urinary Isolates and Antimicrobial Resistance in the Urine Collected from Patients Admitted into Primary-Care Hospital in Shiheung District

초록

Urinary isolates and antimicrobial resistance of a primary hospital representing community were analyzed. The β-lactam and aminoglycoside resistances of E. coli and P. aeruginosa were lower than that seen in a tertiary hospital. Imipenem-resistant P. aeruginosa or VRE was not isolated; however the prevalence of ESBL was thought to be similar to that observed in a tertiary hospital.

REFERENCES

1.Mathai D., Jones RN., Pfaller MA. SENTRY Participant Group North America. Epidemiology and frequency of resistance among pathogens causing urinary tract infections in 1,510 hospitalized patients: a report from the SENTRY Antimicrobial Surveillance Program (North America). Diagn Microbiol Infect Dis. 2001. 40:129–36.
crossref
2.Karlowsky JA., Jones ME., Thornsberry C., Critchley I., Kelly LJ., Sahm DF. Prevalence of antimicrobial resistance among urinary tract pathogens isolated from female outpatients across the US in 1999. Int J Antimicrob Agents. 2001. 18:121–7.
crossref
3.Shin JH., Kim HR., Lee HR., Chung JI., Min K., Moon CS, et al. Etiology and antimicrobial susceptibility of bacterial pathogens causing community-acquired urinary tract infection at a tertiary- care hospital. Korean J Clin Microbiol. 2005. 8:142–7.
4.Ko YH., Oh JS., Cho DY., Bea JH., Koh SK. Changes of causative organisms and antimicrobial sensitivity of urinary tract infection between 1979 and 2001. Korean J Urol. 2003. 44:342–50.
5.Lee JW., Shin JS., Seo JW., Lee MA., Lee SJ. Incidence and risk factors for extended-spectrum beta-lactamase-producing escherichia coli in community-acquired childhood urinary tract infection. J Korean Soc Pediatr Nephrol. 2004. 8:214–22.
6.Stamm WE., Hooton TM. Management of urinary tract infections in adults. N Engl J Med. 1993. 329:1328–34.
crossref
7.Warren JW., Abrutyn E., Hebel JR., Johnson JR., Schaeffer AJ., Stamm WE. Guidelines for antimicrobial treatment of uncompli-cated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin Infect Dis. 1999. 29:745–58.
8.Colodner R., Keness Y., Chazan B., Raz R. Antimicrobial susceptibility of community-acquired uropathogens in northern Israel. Int J Antimicrob Agents. 2001. 18:189–92.
crossref
9.Maeng KY. Study on the ordinary bacteria among urinary tract pathogens isolated during recent 2 years. Korean J Lab Med. 1989. 9:153–9.
10.Moon HW., Lee MA. Urinary tract infection due to coagulase- negative staphylococci: species identification, antimicrobial resistance and clinical characteristics. Korean J Clin Microbiol. 2003. 6:23–8.
11.Ko HS., Choi DY., Han YT. A study of the changes of antibiotic sensitivity to the causative organisms of urinary tract infection for recent 5 years. Korean J Urol. 1999. 40:809–16.
12.Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis Mon. 2003. 49:53–70.
crossref
13.Chong Y., Lee K. Present situation of antimicrobial resistance in Korea. J Infect Chemother. 2000. 6:189–95.
crossref
14.Lee H., Kim CK., Lee J., Lee SH., Ahn JY., Hong SG, et al. Antimicrobial resistance of clinically important bacteria isolated from 12 hospitals in Korea in 2005 and 2006. Korean J Clin Microbiol. 2007. 10:59–69.
15.Lee K., Kim MN., Kim JS., Hong HL., Kang JO., Shin JH, et al. KONSAR Group. Further increases in carbapenem-, amikacin-, and fluoroquinolone-resistant isolates of Acinetobacter spp. and P. aeruginosa in Korea: KONSAR study 2009. Yonsei Med J. 2011. 52:793–802.

Table 1.
Number of patients according to age and sex
Age No. (%) of patients
Male (41.0%) Female (59.0%) Total (%)
0-1 7 (3.3) 4 (1.3) 11 (2.2)
2-9 54 (25.8) 52 (17.3) 106 (20.8)
10-19 3 (1.4) 9 (3.0) 12 (2.4)
20-29 3 (1.4) 12 (4.0) 15 (2.9)
30-39 5 (2.4) 16 (5.3) 21 (4.1)
40-49 7 (3.3) 22 (7.3) 29 (5.9)
50-59 22 (10.5) 33 (11.0) 55 (10.1)
60-69 42 (20.1) 44 (14.6) 86 (16.9)
70-79 43 (20.1) 67 (22.3) 110 (21.2)
≥80 23 (11.0) 42 (14.0) 65 (12.7)
Total 209 (100.0) 301 (100.0) 510 (100.0)
Table 2.
Antimicrobial susceptibility of isolates in urine
Antimicrobial No. (%) of antimicrobial susceptibility
ECO (N=82) KPN (N=12) PMI (N=8) PAE (N=6) EFA (N=19)
Ampicillin 29 (35)   2 (29)   19 (100)
Ciprofloxacin 56 (68) 5 (42) 6 (75) 3 (50) 8 (42)
Gentamicin 60 (75) 8 (67) 5 (63) 3 (50)  
Cephalothin 55 (70) 5 (50) 3 (50)    
Norfloxacin 53 (69) 6 (55) 6 (75) 2 (40) 6 (33)
Cotrimoxazole 46 (58) 5 (50) 2 (29)    
Amoxicillin-clavulanic acid 75 (95) 7 (70) 4 (50)    
Aztreonam 79 (99) 7 (64) 7 (88) 5 (83)  
Cefamandole 62 (78) 4 (40) 6 (75)    
Cefepime 72 (89) 7 (64) 8 (100) 3 (50)  
Cefoxitin 77 (97) 8 (80) 7 (88)    
Ceftriaxone 64 (80) 5 (50) 7 (88) 1 (17)  
Imipenem 82 (100) 12 (100) 8 (100) 6 (100)  
Amikacin       3 (50)  
Cefoperazone       2 (40)  
Ceftazidime       5 (83)  
Tobramycin       3 (60)  
Piperacillin       3 (60)  
Piperacillin-tazobactam       4 (80)  
Gentamicin-high         13 (73)
Streptomycin-high         15 (83)
Erythromycin         4 (22)
Vancomycin         19 (100)
Linezolid         19 (100)

Abbreviations: ECO, Escherichia coli; KPN, K. pneumoniae; PMI, P. mirabilis; PAE, P. aeruginosa; EFA, E. faecalis.

TOOLS
Similar articles