Journal List > J Korean Soc Spine Surg > v.23(1) > 1076097

Lee, Seo, Kang, Kim, and Park: The Association of Low-energy Spine Fractures and Vitamin D Inadequacy: A Case-control Study

Abstract

Study Design

Retrospective study.

Objectives

To compare serum vitamin D levels in elderly patients with or without osteoporotic spinal compression fractures (OSCFs) and to identify relationships between the serum vitamin D level and other variables, such as age, bone mineral density (BMD), and bone turnover markers (osteocalcin and C-telopeptide).

Summary of Literature Review

Vitamin D plays a key role in calcium metabolism in the bone tissue. Vitamin D deficiency can lead to decreased BMD and an increased risk of falls and of osteoporotic fractures.

Materials and Methods

We retrospectively reviewed the medical records of 95 elderly patients (≥60 years) with OSCFs (fracture group) and 118 subjects who had been diagnosed with osteoporosis without OSCFs (control group). Serum vitamin D levels were contrasted between the two groups taking into account other factors such as patient age, sex, and seasonal variations. For all the patients, we also evaluated the correlation between the vitamin D level and the patient age, BMD, and bone turnover markers.

Results

The mean of the serum 25(OH) vitamin D3 levels was significantly lower in the fracture group than in the control group. There were significant differences in the 25(OH) vitamin D3 levels in autumn. In all patients, the mean serum 25(OH) vitamin D3 levels were the highest in autumn and the lowest in spring. Furthermore, the mean serum 25(OH) vitamin D3 levels were significantly correlated with patient age and BMD.

Conclusions

A low serum vitamin D level might be a risk factor of OSCFs in elderly patients.

REFERENCES

1. Chesnut CH 3rd. Osteoporosis, an underdiagnosed disease. JAMA. 2001; 286:2865–6.
crossref
2. Eisman JA, Kelly PJ, Morrison NA, et al. Peak bone mass and osteoporosis prevention. Osteoporos Int. 1993; 3(Suppl):56–60.
3. Fujiwara S. Epidemiology of osteoporosis and fracture. Clin Calcium. 2004; 14:13–8.
4. Sweet MG, Sweet JM, Jeremiah MP, et al. Diagnosis and treatment of osteoporosis. Am Fam Physician. 2009; 79:193–200.
5. Lips P, Bouillon R, van Schoor NM, et al. Reducing fracture risk with calcium and vitamin D. Clin Endocrinol (Oxf). 2010; 73:277–85.
crossref
6. van den Boogaard CH, Breekveldt-Postma NS, Borggreve SE, et al. Persistent bisphosphonate use and the risk of osteoporotic fractures in clinical practice: a database analysis study. Curr Med Res Opin. 2006; 22:1757–64.
crossref
7. Holick MF. The role of vitamin D for bone health and fracture prevention. Curr Osteoporos Rep. 2006; 4:96–102.
crossref
8. Sahota O, Masud T, San P, et al. Vitamin D insufficiency increases bone turnover markers and enhances bone loss at the hip in patients with established vertebral osteoporosis. Clin Endocrinol (Oxf). 1999; 51:217–21.
crossref
9. Holick MF. Vitamin D requirements for humans of all ages: new increased requirements for women and men 50 years and older. Osteoporos Int. 1998; 8(Suppl):24–9.
crossref
10. Garnero P, Sornay-Rendu E, Chapuy MC, et al. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996; 11:337–49.
crossref
11. Jang WY, Chung MS, Baek GH, et al. Vitamin D levels in postmenopausal Korean women with a distal radius fracture. Injury. 2012; 43:237–41.
crossref
12. Bouillon R, Bischoff-Ferrari H, Willett W. Vitamin D and health: perspectives from mice and man. J Bone Miner Res. 2008; 23:974–9.
crossref
13. Bischoff-Ferrari HA, Willett WC, Wong JB, et al. Fracture prevention with vitamin D supplementation – A meta-analysis of randomized controlled trials. JAMA. 2005; 293:2257–64.
14. Kim DH, Vaccaro AR. Osteoporoptic compression fractures of the spine; current options and considerations for treatment. Spine J. 2006; 6:479–87.
15. Dawson-Hughes B, Heaney RP, Holick MF, et al. Es-timates of optimal vitamin D status. Osteoporos Int. 2005; 16:713–6.
crossref
16. No authors listed. Prevention and management of osteoporosis. World Health Organ Tech Rep Ser. 2003; 921:1–164.
17. Moniz C, Dew T, Dixon T. Prevalence of vitamin D inadequacy in osteoporotic hip fracture patients in London. Curr Med Res Opin. 2005; 21:1891–4.
crossref
18. Lee WS, Lee SH, Han SB, et al. Vitamin D Inadequacy in Patients with Osteoporotic Hip Fractures. Korean J Bone Metab. 2011; 18:9–14.
19. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the com-munity: randomised double blind controlled trial. BMJ. 2003; 326:469.
crossref
20. Chapuy MC, Pamphile R, Paris E, et al. Combined calcium and vitamin D3 supplementation in elderly women: confirmation of reversal of secondary hyperparathyroidism and hip fracture risk: the Decalyos II study. Osteoporos Int. 2002; 13:257–64.
crossref
21. Visser M, Deeg DJ, Lips P. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab. 2003; 88:5766–72.
crossref
22. Choi EY. 25 (OH)D status and demographic and lifestyle determinants of 25 (OH)D among Korean adults. Asia Pac J Clin Nutr. 2012; 21:526–35.
23. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardio-vascular disease. Am J Clin Nutr. 2004; 80(Suppl):1678–88.
crossref
24. Garnero P, Gineyts E, Riou JP, et al. Assessment of bone resorption with a new marker of collagen degradation in patients with metabolic bone disease. J Clin Endocrinol Metab. 1994; 79:780–5.
crossref
25. Yamaguchi K, Masuhara K, Yamasaki S, et al. Predictive value of a preoperative biochemical bone marker in relation to bone remodeling after cementless total hip arthroplasty. J Clin Densitom. 2003; 6:259–65.
crossref
26. Garnero P, Hausherr E, Chapuy MC, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res. 1996; 11:1531–8.
crossref
27. Bjarnason NH, Sarkar S, Duong T, et al. Six and twelve month changes in bone turnover are related to reduction in vertebral fracture risk during 3 years of raloxifene treatment in postmenopausal osteoporosis. Osteoporos Int. 2001; 12:922–30.
crossref
28. Bauer DC, Black DM, Garnero P, et al. Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the fracture intervention trial. J Bone Miner Res. 2004; 19:1250–8.
crossref
29. Garnero P, Sornay-Rendu E, Claustrat B, et al. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res. 2000; 15:1526–36.
crossref
30. Melton LJ 3rd, Khosla S, Atkinson EJ, et al. Relationship of bone turnover to bone density and fractures. J Bone Miner Res. 1997; 12:1083–91.
crossref

Fig. 1.
Diagram of included patients uture study.
jkss-23-15f1.tif
Table 1.
Demographic data
    Mean p-value
Fracture group (N=95) Control group (N=118)
Age (years)   73.43±6.63 71.99±7.26 0.14
Sex Female (N/%) 83/87.4 100/84.7 0.58
Smoking (cigarette-years)   13.62±23.80 12.46±23.71 0.73
BMI (kg/m2)   24.05±3.47 24.91±3.88 0.09

p-value <0.05.

Table 2.
Mean serum 25(OH)D3 (ng/ml) depending on age and sex
  Mean p-value
Fracture group Control group
Serum 25(OH)D3 (ng/ml)      
Total 21.86±17.18 28.03±26.06 <0.05
According to age      
  60-69 years (N=19, 46) 24.35±22.25 29.33±25.61 0.46
  70-79 years (N=60, 59) 22.34±16.27 28.73±27.69 0.13
  80+ years (N=16, 13) 17.11±13.52 20.24±19.62 0.62
Sex      
  Male (N=12, 18) 24.48±13.25 31.97±26.95 0.08
  Female (N=83, 100) 21.48±17.71 27.32±25.98 0.38

Normal range in author's hospital, Serum 25(OH)D3 (ng/ml): 30.1–100.0.

Table 3.
Mean BMD∗ (T-score) and bone turnover markers (ng/ml)
  Mean p-value
Fracture group Control group
BMD∗ (T-score)      
  Total −3.83±0.80 −3.23±0.81 <0.001
  L-spine −3.65±0.95 −2.96±1.21 <0.001
  Lt. hip −2.88±0.94 −2.48±0.83 0.002
  Rt. hip −2.87±0.94 −2.49±0.88 0.003
Bone turnover markers      
  Osteocalcin (ng/ml) 16.72±10.68 18.18±10.89 0.33
  C-telopeptide (ng/ml) 0.72±0.42 0.50±0.40 <0.001

BMD∗: bone mineral density, Normal range in author's hospital, Osteocalcin (ng/ml): men >50 years; 14-46/ post-menopause; 15-46/ pre-menopause; 11- 43, C-telopeptide (ng/ml): men 50-70 years; 0.7/ men ≥ 70 years; 0.9/ post-menopause; 1.0/ pre-menopause; 0.1–0.6.

Table 4.
Mean serum 25(OH)D3 (ng/ml) depending on seasonal variations
  Mean p-value
Fracture group Control group
Serum 25 (OH)D3 (ng/ml)      
  Spring (N=23, 29) 24.37±21.97 21.82±22.94 0.7
  Summer (N=19, 30) 21.68±19.69 30.26±32.87 0.26
  Autumn (N=29, 32) 21.51±13.61 31.83±19.81 0.02
  Winter (N=24, 27) 20.22±13.96 28.27±28.40 0.23

p-value <0.05.

Table 5.
Correlations between serum 25(OH)D3 (ng/ml) levels and other variab
  Age Osteocalcin C-telopeptide BMD L-spine Lt. hip Rt. hip
r∗ −0.145 0.068 −0.077 0.206 0.209 0.215 0.188
p-value 0.034 0.32 0.27 0.003 0.003 0.002 0.007

r∗=correlation coefficient.

Table 6.
Correlations between OSCF and Serum 25(OH)D3 (ng/ml) leve
    OSCF serum 25(OH)D3
OSCF r 1 −0.335
  p   0.013
  N 213 213
  r −0.335 1
serum 25(OH)D3 p 0.013  
  N 213 213

p-value <0.05, r∗=correlation coefficient.

Table 7.
Regression analysis between OSCF and serum 25(OH)D3 (ng/ml) leve
    B β t p VIF
  serum 25(OH)D3 −0.472 −0.329 −5.171 0.000 1.626
  BMI −0.12 −0.091 −1.488 0.138 1.015
OSCF Smoking 0.000 −0.009 −0.145 0.885 1.043
Osteocalcin −0.002 −0.071 −1.127 0.261 1.072
  C-telopeptide 0.016 0.343 4.505 0.000 1.585
  BMD −0.169 −0.291 −4.585 0.000 1.100

p-value <0.05.

TOOLS
Similar articles