Abstract
Background
We tested recent evidences that IP triggers selective activation of protein kinase C (PKC) isozymes using isolated Langendorff-perfused rabbit heart with PKC activator, phorbol ester (PMA, 0.01 nM) or inhibitor (calphostin C, 200 nM).
Methods
After stabilization of baseline hemodynamics, the hearts were subjected to 45 min global ischemia (I) followed by 120 min reperfusion (R) with IP (IP group, n=18) or without IP (ischemic control group, n=16). IP was induced by single episode of 5 min I and 10 min R. In the PMA-treated group (n=19) and calphostin C-treated preconditioned group (n=15), PMA and calphostin C was given for 5 and 15 min before 45 min I, respectively. Myocardial cytosolic and membrane PKC activities were measured by 32P- -ATP incorporation into PKC-specific pepetide: PKC isozymes were analyzed by Western blot with monoclonal antibodies.
Results
IP significantly increased the recovery of the LV function including LVDP and coronary flow (p <0.05):however, enhancement of the functional recovery disappeared by calphostin C or PMA treatment. Cytosolic PKC activity decreased to 82-76% in the IP and PMA-treated group (p <0.05): membrane PKC activity increased to 218-272% (p <0.01). However, both fraction of PKC activity was not changed in the calphostin C-treated preconditioned group. In addition, Western blot revealed that PKC- alpha and epsilon, especially epsilon, were selectively translocated during subsequent sustained ischemia after IP or PMA administration. IP and PMA also reduced infarct size (frim 38 to 10-20%, p <0.05). However, calphostin C blocked infarct reduction effect of IP.