Journal List > J Rheum Dis > v.23(5) > 1064278

Kang and Park: Immunomodulatory Function of Mesenchymal Stem Cells for Rheumatoid Arthritis

Abstract

Developments in our comprehension of the autoimmune and inflammation mechanisms in rheumatoid arthritis (RA) have produced targeted therapies that block aberrant immune cells and cytokine networks, and improved treatment of RA patients considerably. Nevertheless, limitations of these treatments include incomplete treatment response, adverse effects requiring drug withdrawal, and refractory cases. Hence, many researchers have redirected efforts towards investigation of other biological aspects of RA, including the mechanisms driving joint tissue repair and balanced immune regulation. This investigation focuses on mesenchymal stem cell (MSC) research, with the ultimate goal of developing interventions for immune modulation and repair of damaged joints. MSCs are multipotent cells capable of differentiating into mesodermal lineage cells. These cells have also attracted interest for their anti-inflammatory and immunomodulatory capacities. They have many distinctive immunological properties, inhibiting the proliferation and production of cytokines by T, B, natural killer, and dendritic cells. Indeed, MSCs have the capacity to regulate immunity-induced peripheral tolerance, suggesting they can be used as therapeutic tools in RA. This review discusses properties of MSCs, in vitro studies, animal studies, and clinical trials involving MSCs. Our review discusses the current knowledge of the mechanisms of MSC-mediated immunosuppression and potential therapeutic uses of MSCs in RA.

REFERENCES

1. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003; 423:356–61.
crossref
2. Gonzalez A, Maradit Kremers H, Crowson CS, Nicola PJ, Davis JM 3rd, Therneau TM, et al. The widening mortality gap between rheumatoid arthritis patients and the general population. Arthritis Rheum. 2007; 56:3583–7.
crossref
3. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011; 365:2205–19.
crossref
4. Espinoza F, Fabre S, Pers YM. Remission-induction therapies for early rheumatoid arthritis: evidence to date and clinical implications. Ther Adv Musculoskelet Dis. 2016; 8:107–18.
crossref
5. Cohen G, Gossec L, Dougados M, Cantagrel A, Goupille P, Daures JP, et al. Radiological damage in patients with rheumatoid arthritis on sustained remission. Ann Rheum Dis. 2007; 66:358–63.
crossref
6. Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P. New therapies for treatment of rheumatoid arthritis. Lancet. 2007; 370:1861–74.
crossref
7. Chiang EY, Kolumam GA, Yu X, Francesco M, Ivelja S, Peng I, et al. Targeted depletion of lymphotoxin-alpha-expressing TH1 and TH17 cells inhibits autoimmune disease. Nat Med. 2009; 15:766–73.
8. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med. 2004; 200:277–85.
9. Tyndall A, van Laar JM. Stem cells in the treatment of inflammatory arthritis. Best Pract Res Clin Rheumatol. 2010; 24:565–74.
crossref
10. Liang J, Li X, Zhang H, Wang D, Feng X, Wang H, et al. Allogeneic mesenchymal stem cells transplantation in patients with refractory RA. Clin Rheumatol. 2012; 31:157–61.
crossref
11. Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev. 2013; 22:3192–202.
crossref
12. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284:143–7.
crossref
13. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8:315–7.
crossref
14. Tyndall A, LeBlanc K. Stem cells and rheumatology: update on adult stem cell therapy in autoimmune diseases. Arthritis Rheum. 2006; 55:521–5.
crossref
15. Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells. 2006; 24:462–71.
crossref
16. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003; 31:890–6.
17. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003; 75:389–97.
crossref
18. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J. Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood. 2005; 106:4057–65.
crossref
19. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood. 2006; 108:2114–20.
crossref
20. Prigozhina TB, Khitrin S, Elkin G, Eizik O, Morecki S, Slavin S. Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation. Exp Hematol. 2008; 36:1370–6.
crossref
21. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008; 2:141–50.
crossref
22. Dazzi F, Krampera M. Mesenchymal stem cells and autoimmune diseases. Best Pract Res Clin Haematol. 2011; 24:49–57.
crossref
23. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004; 103:4619–21.
crossref
24. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenu-ate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009; 15:42–9.
crossref
25. Asari S, Itakura S, Ferreri K, Liu CP, Kuroda Y, Kandeel F, et al. Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol. 2009; 37:604–15.
crossref
26. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005; 105:1815–22.
crossref
27. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008; 26:212–22.
crossref
28. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005; 105:2821–7.
crossref
29. Rasmusson I, Ringdén O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 2003; 76:1208–13.
crossref
30. Prevosto C, Zancolli M, Canevali P, Zocchi MR, Poggi A. Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica. 2007; 92:881–8.
crossref
31. Tabera S, Pérez-Simón JA, Díez-Campelo M, Sánchez-Abarca LI, Blanco B, López A, et al. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica. 2008; 93:1301–9.
crossref
32. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008; 111:1327–33.
crossref
33. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol. 2006; 177:2080–7.
crossref
34. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006; 24:74–85.
crossref
35. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood. 2005; 106:419–27.
crossref
36. Stappenbeck TS, Miyoshi H. The role of stromal stem cells in tissue regeneration and wound repair. Science. 2009; 324:1666–9.
crossref
37. Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther. 2016; 7:7.
crossref
38. Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 2007; 56:1175–86.
crossref
39. González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum. 2009; 60:1006–19.
crossref
40. Choi JJ, Yoo SA, Park SJ, Kang YJ, Kim WU, Oh IH, et al. Mesenchymal stem cells overexpressing interleukin-10 at-tenuate collagen-induced arthritis in mice. Clin Exp Immunol. 2008; 153:269–76.
crossref
41. Park MJ, Park HS, Cho ML, Oh HJ, Cho YG, Min SY, et al. Transforming growth factor β-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum. 2011; 63:1668–80.
crossref
42. Liu Y, Mu R, Wang S, Long L, Liu X, Li R, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther. 2010; 12:R210.
crossref
43. Bouffi C, Bony C, Courties G, Jorgensen C, Noël D. IL-6-de-pendent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS One. 2010; 5:e14247.
crossref
44. Djouad F, Fritz V, Apparailly F, Louis-Plence P, Bony C, Sany J, et al. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum. 2005; 52:1595–603.
45. Chen B, Hu J, Liao L, Sun Z, Han Q, Song Z, et al. Flk-1+ mesenchymal stem cells aggravate collagen-induced arthritis by upregulating interleukin-6. Clin Exp Immunol. 2010; 159:292–302.
crossref
46. Schurgers E, Kelchtermans H, Mitera T, Geboes L, Matthys P. Discrepancy between the in vitro and in vivo effects of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis. Arthritis Res Ther. 2010; 12:R31.
47. MacDonald GI, Augello A, De Bari C. Role of mesenchymal stem cells in reestablishing immunologic tolerance in autoimmune rheumatic diseases. Arthritis Rheum. 2011; 63:2547–57.
crossref
48. Meyerrose TE, De Ugarte DA, Hofling AA, Herrbrich PE, Cordonnier TD, Shultz LD, et al. In vivo distribution of human adipose-derived mesenchymal stem cells in novel xen-otransplantation models. Stem Cells. 2007; 25:220–7.
crossref
49. Park KH, Mun CH, Kang MI, Lee SW, Lee SK, Park YB. Treatment of collagen-induced arthritis using immune modulatory properties of human mesenchymal stem cells. Cell Transplant. 2016; 25:1057–72.
crossref
50. Garimella MG, Kour S, Piprode V, Mittal M, Kumar A, Rani L, et al. Adipose-derived mesenchymal stem cells prevent systemic bone loss in collagen-induced arthritis. J Immunol. 2015; 195:5136–48.
crossref
51. Ra JC, Kang SK, Shin IS, Park HG, Joo SA, Kim JG, et al. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J Transl Med. 2011; 9:181.
crossref
52. Safety and efficacy study of human umbilical cord-mesenchymal stem cells for rheumatoid arthritis. Silver Spring (MD): U.S. Food and Drug Administration;2016 Jan. ClinicalTrials.gov Identifier: NCT02643823. Available from:. https://clinicaltrials.gov/ct2/show/NCT02643823?term=NCT02643823&rank=1.
53. Feasibility study of umbilical cord tissue drived mesenchymal stem cells (UC-MSC) in disease modifying antirheumatic drugs (DMARD) resistant rheumatoid arthritis. Panama: Panama: Ministry of Health;. 2013; Oct. ClinicalTrials.gov Identifier: NCT01985464. Available from:. https://clinicaltrials.gov/ct2/show/NCT01985464?term=NCT01985464&rank=1.
54. Phase Ib/IIa, Escalating dose, single blind, clinical trial to assess the safety of the i.v administration of allogeneic adi-pose-derived mesenchymal cells (eASCs) to refractory rheumatoid arthritis patients. Madrid: Spanish Agency for Medicines and Health Products;. 2011; Aug. ClinicalTrials. gov Identifier: NCT01663116. Available from:. https://clinicaltrials.gov/ct2/show/NCT01663116?term=NCT01663116&rank=1.
55. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012; 7:e47559.
crossref

Figure 1.
Suppressive effects of MSCs on immune cells. The effects of MSCs on cells of the immune system are anti-inflammatory. DCs: dendritic cells, MSCs: mesenchymal stem cells, NK cell: natural killer cell, TREG cell: regulatory T cell.
jrd-23-279f1.tif
Table 1.
The literature describing the effects of mesenchymal stem cells (MSCs) in mouse model of rheumatoid arthritis
First author, year [ref] Source of MSC D Donor– recipient MHC match Dose of MSCs s Route of administration Time of treatment Outcome of treatment
Djouad et al.,2005 [44] C3 mouse cell line Allogeneic 1×106, 1×106, 4×106 Intravenous Day 0 or 21, day 0 or 21 UA*
Augello et al.,2007 [38] Mouse BM Allogeneic 5×106 Intraperitoneal Day 0 or 21 Positive
Gonzalez et al.,2009 [39] Adipose tissue: human, mouse Xenogeneic, allogeneic 1×106 Intraperitoneal, intraarticular Once per day for 5 days ADO Positive
Choi et al.,2008 [40] Mouse BM Syngeneic 1×106 Intravenous Day 21, 28, 35 Positive
Park et al.,2011 [41] Mouse BM Syngeneic 1×106 Intraperitoneal Week 7 Positive
Liu et al.,2010 [42] Human UC Xenogeneic 5×106 Intraperitoneal Day 31 ADO Positive
Bouffi et al.,2010 [43] Mouse BM Syngeneic, allogeneic 1×106 Intravenous Day 18, 24,28, 32 Positive
Chen et al.,2010 [45] Mouse BM Syngeneic 1×106, 2×106 Intravenous Day 0 or 21 Negative
Schurgers et al.,2010 [46] Mouse BM Syngeneic, allogeneic 1×106 Intravenous, intraperitoneal Day 1, 16,19, 23, 30 Negative

Time of treatment is shown as number of days or weeks before or after induction of arthritis, except where specified as number of days after disease onset (ADO). Ref: reference, MHC: major histocompatibility complex, BM: bone marrow, UC: umbilical cord.

* No effect, indicated by an unaffected disease score.

Positive effect, indicated by a disease score reduction.

Negative effect, indicated by a disease score increase.

TOOLS
Similar articles