Journal List > J Rheum Dis > v.23(4) > 1064270

Eom, Seo, and Kim: Human Leukocyte Antigen B27 and Juvenile Idiopathic Arthritis and Classification of Juvenile Spondyloarthropathies by the Assessment of SpondyloArthritis International Society Criteria

Abstract

Objective

We examined the clinical relationship between human leukocyte antigen B27 (HLA-B27) and juvenile idiopathic arthritis (JIA). Additionally, we assessed the usefulness of the Assessment of SpondyloArthritis International Society (ASAS) criteria for diagnosing juvenile spondyloarthropathies (SpA).

Methods

We retrospectively reviewed medical records of 239 patients with JIA classified according to the International League of Associations for Rheumatology (ILAR) classification to analyze the features of the joint involvement site. Results were correlated with the presence of HLA-B27. After that, we classified the 239 JIA patients according to the ASAS criteria to diagnose juvenile SpA. The relationship between the ASAS criteria and a diagnosis of juvenile SpA was analyzed by a chi-squared test.

Results

Back pain was associated with HLA-B27 in boys (p=0.002) but not in girls (p=0.616). In both sexes, involvement of the small joints in the lower extremities was highly associated with HLA-B27 (p=0.001 for boys, p=0.021 for girls). In addition, HLA-B27 was associated with enthesitis (p=0.004 for boys, p=0.021 for girls). Eighty-seven (36.4%) patients with JIA fulfilled the ASAS criteria; 2 (0.8%) had axial SpA and 85 (35.6%) had peripheral SpA. HLA-B27 was the most significant factor for diagnosing juvenile SpA (sensitivity 80%, specificity 99.31%, positive likelihood ratio, 116).

Conclusion

The ILAR criteria have some weaknesses for diagnosing HLA-B27-positive JIA patients in early stages. The use of the ASAS criteria for juvenile patients will enable pediatric rheumatologists to diagnose juvenile SpA patients earlier.

REFERENCES

1. Cassidy JT, Petty RE, Laxer R, Lindsley C. Textbook of pediatric rheumatology. 6th ed.Philadelphia: Elesevier Saunders;2011. p. 211.
2. Shim YS, Kim JS, Lee KK, Lee KM, Kim KN. Juvenile rheumatoid arthritis in children with ebstein-barr virus infection. J Rheum Dis. 2012; 19:19–24.
crossref
3. Nepom B. The immunogenetics of juvenile rheumatoid arthritis. Rheum Dis Clin North Am. 1991; 17:825–42.
crossref
4. Petty RE. Etiology and pathogenesis of rheumatic diseases of adolescence. Adolesc Med. 1998; 9:11–24.
5. Queiro R, Torre JC, González TJC, López-Larrea C, Tinturé T, López-Lagunas I. HLA antigens may influence the age of onset of psoriasis and psoriatic arthritis. J Rheumatol. 2003; 30:505–7.
6. Queiro R, Sarasqueta C, Belzunegui J, Gonzalez C, Figueroa M, Torre-Alonso JC. Psoriatic spondyloarthropathy: a comparative study between HLA-B27 positive and HLA-B27 negative disease. Semin Arthritis Rheum. 2002; 31:413–8.
crossref
7. Gensler L, Davis JC Jr. Recognition and treatment of juvenile-onset spondyloarthritis. Curr Opin Rheumatol. 2006; 18:507–11.
crossref
8. Gmuca S, Weiss PF. Juvenile spondyloarthritis. Curr Opin Rheumatol. 2015; 27:364–72.
crossref
9. Jacobs JC, Berdon WE, Johnston AD. HLA-B27-associated spondyloarthritis and enthesopathy in childhood: clinical, pathologic, and radiographic observations in 58 patients. J Pediatr. 1982; 100:521–8.
crossref
10. Hall MA, Burgos Vargos R, Ansell BM. Sacroiliitis in juvenile chronic arthritis. A 10-year follow-up. Clin Exp Rheumatol. 1987; 5(Suppl 1):S65–7.
11. Prieur AM. HLA B27 associated chronic arthritis in children: review of 65 cases. Scand J Rheumatol Suppl. 1987; 66:51–6.
crossref
12. Burgos-Vargas R, Clark P. Axial involvement in the seronegative enthesopathy and arthropathy syndrome and its progression to ankylosing spondylitis. J Rheumatol. 1989; 16:192–7.
13. Cabral DA, Oen KG, Petty RE. SEA syndrome revisited: a longterm followup of children with a syndrome of seronegative enthesopathy and arthropathy. J Rheumatol. 1992; 19:1282–5.
14. Berntson L, Damgård M, Andersson-Gäre B, Herlin T, Nielsen S, Nordal E, et al. HLA-B27 predicts a more extended disease with increasing age at onset in boys with juvenile idiopathic arthritis. J Rheumatol. 2008; 35:2055–61.
crossref
15. Amor B, Dougados M, Mijiyawa M. [Criteria of the classification of spondylarthropathies]. Rev Rhum Mal Osteoartic. 1990; 57:85–9. In French.
16. Dougados M, van der Linden S, Juhlin R, Huitfeldt B, Amor B, Calin A, et al. The European Spondylarthropathy Study Group preliminary criteria for the classification of spondylarthropathy. Arthritis Rheum. 1991; 34:1218–27.
crossref
17. Petty RE, Southwood TR, Baum J, Bhettay E, Glass DN, Manners P, et al. Revision of the proposed classification criteria for juvenile idiopathic arthritis: Durban, 1997. J Rheumatol. 1998; 25:1991–4.
18. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004; 31:390–2.
19. Tse SM, Laxer RM. New advances in juvenile spondyloarthritis. Nat Rev Rheumatol. 2012; 8:269–79.
crossref
20. Schaller JG, Ochs HD, Thomas ED, Nisperos B, Feigl P, Wedgwood RJ. Histocompatibility antigens in child-hood-onset arthritis. J Pediatr. 1976; 88:926–30.
crossref
21. Murray KJ, Moroldo MB, Donnelly P, Prahalad S, Passo MH, Giannini EH, et al. Age-specific effects of juvenile rheumatoid arthritis-associated HLA alleles. Arthritis Rheum. 1999; 42:1843–53.
crossref
22. Gran JT, Mellby AS, Husby G. The prevalence of HLA-B27 in northern Norway. Scand J Rheumatol. 1984; 13:173–6.
crossref
23. Pruunsild C, Uibo K, Liivamägi H, Tarraste S, Talvik T, Pelkonen P. Incidence of juvenile idiopathic arthritis in children in Estonia: a prospective population-based study. Scand J Rheumatol. 2007; 36:7–13.
crossref
24. Moe N, Rygg M. Epidemiology of juvenile chronic arthritis in northern Norway: a ten-year retrospective study. Clin Exp Rheumatol. 1998; 16:99–101.
25. Wu CJ, Huang JL, Yang MH, Yan DC, Ou LS, Ho HH. Clinical characteristics of juvenile rheumatoid arthritis in Taiwan. J Microbiol Immunol Infect. 2001; 34:211–4.
26. Fujikawa S, Okuni M. Clinical analysis of 570 cases with juvenile rheumatoid arthritis: results of a nationwide retrospective survey in Japan. Acta Paediatr Jpn. 1997; 39:245–9.
crossref
27. Boyko Y. Clinical immunology HLA B27 association in children with juvenile idiopathic arthritis: a clinical study of 72 patients. Centr Eur J Immunol. 2009; 34:171–5.
28. Burgos-Vargas R, Vázquez-Mellado J. The early clinical recognition of juvenile-onset ankylosing spondylitis and its differentiation from juvenile rheumatoid arthritis. Arthritis Rheum. 1995; 38:835–44.
crossref
29. Sheerin KA, Giannini EH, Brewer EJ Jr, Barron KS. HLA-B27-associated arthropathy in childhood: long-term clinical and diagnostic outcome. Arthritis Rheum. 1988; 31:1165–70.
crossref
30. Cassidy JT, Levinson JE, Bass JC, Baum J, Brewer EJ Jr, Fink CW, et al. A study of classification criteria for a diagnosis of juvenile rheumatoid arthritis. Arthritis Rheum. 1986; 29:274–81.
crossref
31. Burgos-Vargas R. The Assessment of the Spondyloarthritis International Society concept and criteria for the classification of axial spondyloarthritis and peripheral spondyloarthritis: a critical appraisal for the pediatric rheumatologist. Pediatr Rheumatol Online J. 2012; 10:14.
crossref

Table 1.
Classification performed at 5 years from disease onset in 239 children with JIA
Subgroup at onset (ILAR criteria) Total cohort HLA-B27 not analyzed HLA-B27-positive HLA-B27-negative
Systemic 63 (26.4) 5 7 (12.1) 51 (87.9)
Oligoarticular persistent 81 (33.9) 2 31 (39.2) 48 (60.8)
Oligoarticular extended 19 (7.9) 0 7 (36.8) 12 (63.2)
Polyarticular RF-negative Polyarticular RF-positive 51 (21.3) 16 (6.7) 1 1 18 (36.0) 1 (6.7) 32 (64.0) 14 (93.3)
Psoriatic 1 (0.4) 0 0 (0) 1 (100)
Enthesitis-related 5 (2.1) 0 5 (100) 0 (0)
Unclassifiable 3 (1.3) 0 0 (0) 3 (100)
Total 239 (100) 9 69 (30.0) 161 (70.0)

Values are presented as number (%). JIA: juvenile idiopathic arthritis, ILAR: International League of Associations for Rheumatology, HLA: human leukocyte antigen, RF: rheumatoid factor.

Table 2.
Sex distribution, age at disease onset and radiographic sacroiliitis in 239 children with JIA
Variable Total HLA-B27-positive HLA-B27-negative p-value
Boy:girl 117:122 (49.0:51.0) 47:22 (68.1:31.9) 67:94 (41.6:58.4) 0.001
Age (years)        
Boy 7.6±3.5 9.3±2.9 6.4±3.5 0.001
Girl 6.3±4.2 7.8±4.3 5.9±4.2 0.063
Radiographic sacroiliitis 14 (18.6) 12 (17.4) 2 (1.2) 0.001

Values are presented as number (%) or mean±standard deviation. JIA: juvenile idiopathic arthritis, HLA: human leukocyte antigen. Radiographic sacroiliitis is shown on pelvic X-ray or magnetic resonance imaging.

Table 3.
Analysis of children with JIA in relation to joint involvement and HLA-B27 status
Variables Sex HLA-B27-positive HLA-B27-negative p-value
Hip pain Boy 20/47 (42.6) 20/67 (29.9) 0.162
  Girl 2/22 (9.1) 17/94 (18.1) 0.522
Back pain Boy 7/47 (14.9) 0/67 (0) 0.002
  Girl 2/22 (9.1) 5/94 (5.3) 0.616
Enthesitis Boy 15/47 (31.9) 7/67 (10.4) 0.004
  Girl 3/22 (13.6) 1/94 (1.1) 0.021
Large joint of upper extremities Boy 17/47 (36.2) 38/67 (56.7) 0.031
  Girl 14/22 (63.6) 56/94 (59.6) 0.726
Small joint of upper extremities Boy 9/47 (19.1) 27/67 (40.3) 0.017
  Girl 8/22 (36.4) 40/94 (42.6) 0.596
Large joint of lower extremities Boy Girl 40/47 (85.1) 22/22 (100) 56/67 (83.6) 77/94 (81.9) 0.826 0.040
Small joint of lower extremities Boy 30/47 (63.8) 18/67 (26.9) 0.001
  Girl 9/22 (40.9) 16/94 (17.0) 0.021

Values are presented as number (%). JIA: juvenile idiopathic arthritis, HLA: human leukocyte antigen. Large joint: shoulder, elbow and wrist at upper extremities; knee and ankle at lower extremities. Small joint: midcarpal, carpometacarpal, meta-carpophalangeal, and interphalangeal joints at upper extremities; subtalar, talonavicular, calcaneocuboid, naviculocuneiform, tarsometatarsal, metatarsophalangeal, and interphalangeal joints at lower extremities.

Table 4.
Sensitivity, specificity, PLRs and negative likelihood ratios of clinical and laboratory SpA features in patients classified according to ASAS criteria
Variable Sensitivity (%) Specificity (%) PLR NLR
Inflammatory back pain 10.47 98.69 8.01 0.91
Hip pain 29.07 77.12 1.27 0.92
Peripheral arthritis 97.67 15.03 1.15 0.15
Enthesitis 25.58 97.39 9.78 0.76
Psoriasis 1.16 100.00 ND 0.99
Uveitis 25.58 99.35 39.14 0.75
Preceding infection 2.33 99.35 3.56 0.98
Family history of SpA 1.16 99.35 1.78 0.99
CRP elevation 69.14 39.60 1.14 0.78
HLA-B27 80.00 99.31 116.00 0.20
Sacroiliitis 9.30 100.00 ND 0.91

PLR: positive likelihood ratio, SpA: spondyloarthropathy, ASAS: Assessment of SpondyloArthritis International Society, CRP: C-reactive protein, HLA: human leukocyte antigen, NLR: negative likelihood ratio, ND: not determined.

Table 5.
Univariate analysis for clinical and laboratory SpA features in patients classified according to ASAS criteria
Variable None (n=153) SpA (n=86) Odds ratio p-value
Inflammatory back pain 2 (18.2) 9 (81.8) 8.83 0.001
Hip pain 35 (58.3) 25 (41.7) 1.38 0.289
Peripheral arthritis 130 (60.7) 84 (39.3) 7.43 0.002
Enthesitis 4 (15.4) 22 (84.6) 12.81 0.001
Psoriasis 0 (0) 1 (100) ND 0.181
Uveitis 1 (4.3) 22 (95.7) 52.25 0.001
Preceding infection 1 (33.3) 2 (66.7) 3.62 0.265
Family history of SpA 1 (50.0) 1 (50.0) 1.79 0.678
CRP elevation 90 (61.6) 56 (38.4) 1.47 0.189
HLA-B27 1 (1.4) 68 (98.6) 576.00 0.001
Sacroiliitis 0 (0) 8 (100) ND 0.001

Values are presented as number (%). SpA: spondyloarthropathy, ASAS: Assessment of SpondyloArthritis International Society CRP: C-reactive protein, HLA: human leukocyte antigen, ND: not determined.

TOOLS
Similar articles