Journal List > J Rheum Dis > v.23(3) > 1064257

Seong, Kim, and Kim: Pro-inflammatory Cytokines Modulating Osteoclast Differentiation and Function

Abstract

In general, bone homeostasis is maintained through the balance between bone formation and resorption. Disruption in this balance results in bone-related diseases such as osteopetrosis, osteoporosis, and rheumatoid arthritis. Often, enhanced osteoclastogenesis is followed by accelerated bone resorption that is induced by pro-inflammatory cytokines in osteoporosis or rheumatoid arthritis, and leads to bone destruction. In this review study, factors involved in osteoclast differentiation and function are discussed, and how the prevention of such factors is effective in ameliorating bone loss in osteoporosis or rheumatoid arthritis.

REFERENCES

1. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010; 285:25103–8.
crossref
2. Charles JF, Aliprantis AO. Osteoclasts: more than ‘bone eaters’. Trends Mol Med. 2014; 20:449–59.
crossref
3. Imai Y, Youn MY, Inoue K, Takada I, Kouzmenko A, Kato S. Nuclear receptors in bone physiology and diseases. Physiol Rev. 2013; 93:481–523.
crossref
4. Soysa NS, Alles N, Aoki K, Ohya K. Osteoclast formation and differentiation: an overview. J Med Dent Sci. 2012; 59:65–74.
5. Chen YC, Sosnoski DM, Mastro AM. Breast cancer metastasis to the bone: mechanisms of bone loss. Breast Cancer Res. 2010; 12:215.
crossref
6. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001; 344:907–16.
crossref
7. Jung SM, Kim KW, Yang CW, Park SH, Ju JH. Cytokinemediated bone destruction in rheumatoid arthritis. J Immunol Res. 2014; 2014; 263625.
crossref
8. Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012; 8:656–64.
crossref
9. Amarasekara DS, Yu J, Rho J. Bone loss triggered by the cytokine network in inflammatory autoimmune diseases. J Immunol Res. 2015; 2015; 832127.
crossref
10. Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol. 2002; 2:364–71.
crossref
11. Mateen S, Zafar A, Moin S, Khan AQ, Zubair S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta. 2016; 455:161–71.
crossref
12. Schett G. Cells of the synovium in rheumatoid arthritis. Osteoclasts. Arthritis Res Ther. 2007; 9:203.
13. Kitaura H, Zhou P, Kim HJ, Novack DV, Ross FP, Teitelbaum SL. M-CSF mediates TNF-induced inflammatory osteolysis. J Clin Invest. 2005; 115:3418–27.
crossref
14. Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y. Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem. 2001; 276:563–8.
15. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med. 2000; 191:275–86.
16. Gilbert L, He X, Farmer P, Rubin J, Drissi H, van Wijnen AJ, et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem. 2002; 277:2695–701.
17. Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M, et al. Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis. 2010; 69:2152–9.
crossref
18. Kim JH, Jin HM, Kim K, Song I, Youn BU, Matsuo K, et al. The mechanism of osteoclast differentiation induced by IL-1. J Immunol. 2009; 183:1862–70.
crossref
19. Kurz K, Herold M, Russe E, Klotz W, Weiss G, Fuchs D. Effects of antitumor necrosis factor therapy on osteoprotegerin, neopterin, and sRANKL concentrations in patients with Rheumatoid arthritis. Dis Markers. 2015; 2015; 276969.
crossref
20. Shealy DJ, Wooley PH, Emmell E, Volk A, Rosenberg A, Treacy G, et al. Anti-TNF-alpha antibody allows healing of joint damage in polyarthritic transgenic mice. Arthritis Res. 2002; 4:R7.
21. Kawai VK, Stein CM, Perrien DS, Griffin MR. Effects of antitumor necrosis factor α agents on bone. Curr Opin Rheumatol. 2012; 24:576–85.
crossref
22. Ruscitti P, Cipriani P, Carubbi F, Liakouli V, Zazzeroni F, Di Benedetto P, et al. The role of IL-1β in the bone loss during rheumatic diseases. Mediators Inflamm. 2015; 2015; 782382.
23. Lacativa PG, Farias ML. Osteoporosis and inflammation. Arq Bras Endocrinol Metabol. 2010; 54:123–32.
crossref
24. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest. 2005; 115:282–90.
crossref
25. Jules J, Zhang P, Ashley JW, Wei S, Shi Z, Liu J, et al. Molecular basis of requirement of receptor activator of nuclear factor κ B signaling for interleukin 1-mediated osteoclastogenesis. J Biol Chem. 2012; 287:15728–38.
26. Lee YM, Fujikado N, Manaka H, Yasuda H, Iwakura Y. IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol. 2010; 22:805–16.
crossref
27. van den Berg WB, Bresnihan B. Pathogenesis of joint damage in rheumatoid arthritis: evidence of a dominant role for interleukin-I. Baillieres Best Pract Res Clin Rheumatol. 1999; 13:577–97.
28. Joosten LA, Helsen MM, Saxne T, van De Loo FA, Heinegard D, van Den Berg WB. IL-1 alpha beta blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-alpha blockade only ameliorates joint inflammation. J Immunol. 1999; 163:5049–55.
29. Srirangan S, Choy EH. The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2010; 2:247–56.
crossref
30. Palmqvist P, Persson E, Conaway HH, Lerner UH. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol. 2002; 169:3353–62.
31. Wong PK, Quinn JM, Sims NA, van Nieuwenhuijze A, Campbell IK, Wicks IP. Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum. 2006; 54:158–68.
crossref
32. Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S. Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem. 2008; 283:11535–40.
33. Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, et al. IL-1β and TNFα-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol. 2011; 23:701–12.
crossref
34. De Benedetti F, Rucci N, Del Fattore A, Peruzzi B, Paro R, Longo M, et al. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum. 2006; 54:3551–63.
crossref
35. Poli V, Balena R, Fattori E, Markatos A, Yamamoto M, Tanaka H, et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 1994; 13:1189–96.
crossref
36. Wong PK, Campbell IK, Egan PJ, Ernst M, Wicks IP. The role of the interleukin-6 family of cytokines in inflammatory arthritis and bone turnover. Arthritis Rheum. 2003; 48:1177–89.
crossref
37. Karmakar S, Kay J, Gravallese EM. Bone damage in rheumatoid arthritis: mechanistic insights and approaches to prevention. Rheum Dis Clin North Am. 2010; 36:385–404.
crossref
38. Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect. 2013; 2:e60.
crossref
39. Adamopoulos IE, Bowman EP. Immune regulation of bone loss by Th17 cells. Arthritis Res Ther. 2008; 10:225.
crossref
40. Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003; 14:155–74.
crossref
41. Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther. 2010; 12:R29.
42. Lubberts E, van den Bersselaar L, Oppers-Walgreen B, Schwarzenberger P, Coenen-de Roo CJ, Kolls JK, et al. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance. J Immunol. 2003; 170:2655–62.
43. Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010; 129:311–21.
crossref
44. Shen F, Gaffen SL. Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine. 2008; 41:92–104.
crossref
45. Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, Coenen-de Roo CJ, Joosten LA, et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 2004; 50:650–9.
crossref
46. Genovese MC, Greenwald M, Cho CS, Berman A, Jin L, Cameron GS, et al. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal anti-body, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol. 2014; 66:1693–704.
crossref
47. Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010; 2:52ra72.
crossref
48. Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol. 2015; 11:562.
crossref
49. Adamopoulos IE, Tessmer M, Chao CC, Adda S, Gorman D, Petro M, et al. IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J Immunol. 2011; 187:951–9.
crossref
50. Chen L, Wei XQ, Evans B, Jiang W, Aeschlimann D. IL-23 promotes osteoclast formation by upregulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur J Immunol. 2008; 38:2845–54.
51. Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N, et al. IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther. 2007; 9:R96.
crossref
52. Dai SM, Shan ZZ, Xu H, Nishioka K. Cellular targets of in-terleukin-18 in rheumatoid arthritis. Ann Rheum Dis. 2007; 66:1411–8.
crossref
53. Dai SM, Nishioka K, Yudoh K. Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1 beta and tumour necrosis factor alpha. Ann Rheum Dis. 2004; 63:1379–86.

Figure 1.
Roles of proinflammatory cytokines in osteoclastogenesis. Pro-inflammatory cytokines are produced from various immune cells including T cells, B cells, macrophages, dendritic cells, FLS, etc. Proinflammatory cytokines induce osteoclastogenesis either dependent or independent of the RANKL-RANK signaling pathway. FLS: fibroblast-like synoviocytes, IL: interleukin, RANKL: receptor activator of nuclear factor kappa-B ligand, TNF-α: tumor necrosis factor alpha.
jrd-23-148f1.tif
Table 1.
Roles of pro-inflammatory cytokines in osteoclastogenesis
Cytokines Effects on osteoclasts Effects on osteoblasts Effects of antibody/blockade Sources
TNF-α Enhances osteoclastogenesis independent of RANKL-RANK signaling pathway Exhibits pro-osteoclastogenic effects synergistically with IL-1 Upregulates M-CSF and RANKL in osteoblasts and osteocytes Inhibits osteoblastogenesis and nodule formation Induces Dkk-1, Wnt antagonist, to inhibit osteoblastogenesis Inhibitor utilization alleviates synovial inflammation and join erosion Prevents systemic bone loss Macrophages
IL-1 Enhances osteoclastogenesis and prevents osteoclast apoptosis by upregulating RANKL expression and stimulating M-CSF production Enhances osteoclastogenesis and bone resorption Mediates TNF-α-induced osteoclastogenesis Stimulates RANKL production Decreases cartilage damage and bone resorption Macrophages
IL-6 Dual roles on osteoclasts; induces bone resorption Inhibits RANK signaling in osteoclast progenitors in the absence of supporting cells Induces RANKL synthesis in osteoblasts Suppresses RANKL-stimulated osteoclast differentiation and bone resorption T cells Macrophages Synovial fibroblasts
IL-17 Supports osteoclastogenesis dependent of RANKL-RANK signaling pathway Enhances the sensitivity of osteoclast precursors to RANKL Upregulates RANKL expression Reduces bone destruction and joint erosion Th 17 cells
IL-18 Suppresses osteoclastogenesis but involved in bone destruction Stimulates osteoclastogenesis by upregulating RANKL production from T cells Increases OPG expression in osteoblasts Decreases inflammation and cartilage degradation Inhibits TNF-α, IL-6, and IFN-gamma secretion Macrophages Dendritic cells
IL-23 Enhances osteoclastogenesis Upregulates RANK expression to induce osteoclastogenesis Direct effect of IL-23 on osteoblasts is unknown Suppresses osteoclastogenesis, inflammation, and bone destruction Macrophages Osteoclasts

IFN: interferon, IL: interleukin, M-CSF: macrophage-colony stimulating factor, OPG: osteoprotegerin, RANKL: receptor activato of nuclear factor kappa-B ligand, Th 17: T helper 17, TNF-α: tumor necrosis factor alpha.

TOOLS
Similar articles