Journal List > J Rheum Dis > v.21(5) > 1064130

Lee: Autoinflammatory Diseases

Abstract

Autoinflammatory diseases (AIDs) refer to a broad range of genetically mediated conditions characterized by recurrent attacks of systemic inflammation with typical manifestations of fever, rash, serositis, lymphadenopathy, and musculoskeletal symptoms. The discovery of genetic basis for these conditions have led to the understanding of novel intracellular receptors for infectious and noninfectious danger signals in innate immunity. Innate immunity has a key role in the development of AIDs, in contrast with autoimmune disease, which arise from problems in adaptive immunity. Advances in understanding the molecular mechanisms of intracellular inflammatory cascades have led to renewed interest in its role in the pathogenesis of more common non-genetic autoinflammatory rheumatic conditions, such as Behcet's disease, gouty arthritis, Adult onset Still's diseases, and systemic onset juvenile arthritis. The characterization of cryopyrin (inflammasome) and its significant role in the activation of proinflammatory cytokines, such as IL-1β and TNF-α in the development of AIDs, has provided rational targets of anti-cy-tokine biologic treatment for some of these conditions.

REFERENCES

1. Balow JE Jr, Shelton DA, Orsborn A, Mangelsdorf M, Aksentijevich I, Blake T, et al. A high-resolution genetic map of the familial Mediterranean fever candidate region allows identification of haplotype-sharing among ethnic groups. Genomics. 1997; 44:280–91.
crossref
2. French FMF Consortium. A candidate gene for familial Mediterranean fever. Nat Genet. 1997; 17:25–31.
3. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009; 27:229–65.
crossref
4. Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol. 2009; 27:621–68.
5. Chang C. The pathogenesis of neonatal autoimmune and autoinflammatory diseases: a comprehensive review. J Autoimmun. 2013; 41:100–10.
crossref
6. Grateau G, Hentgen V, Stojanovic KS, Jéru I, Amselem S, Steichen O. How should we approach classification of autoinflammatory diseases? Nat Rev Rheumatol. 2013; 9:624–9.
crossref
7. Franchi L, Warner N, Viani K, Nuñez G. Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev. 2009; 227:106–28.
crossref
8. Mitroulis I, Skendros P, Ritis K. Targeting IL-1beta in disease; the expanding role of NLRP3 inflammasome. Eur J Intern Med. 2010; 21:157–63.
9. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009; 10:241–7.
crossref
10. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002; 10:417–26.
11. Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity. 2006; 24:317–27.
crossref
12. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors li-cense NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009; 183:787–91.
13. Dinarello CA. Mutations in cryopyrin: bypassing road-blocks in the caspase 1 inflammasome for interleukin-1beta secretion and disease activity. Arthritis Rheum. 2007; 56:2817–22.
14. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001; 29:301–5.
crossref
15. Ting JP, Kastner DL, Hoffman HM. CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol. 2006; 6:183–95.
crossref
16. Eisenberg S, Aksentijevich I, Deng Z, Kastner DL, Matzner Y. Diagnosis of familial Mediterranean fever by a molecular genetics method. Ann Intern Med. 1998; 129:539–42.
crossref
17. Ozçakar ZB, Yalçinkaya F, Yüksel S, Ekim M. The ex-panded clinical spectrum of familial Mediterranean fever. Clin Rheumatol. 2007; 26:1557–60.
crossref
18. Kees S, Langevitz P, Zemer D, Padeh S, Pras M, Livneh A. Attacks of pericarditis as a manifestation of familial Mediterranean fever (FMF). QJM. 1997; 90:643–7.
crossref
19. Garcia-Gonzalez A, Weisman MH. The arthritis of familial Mediterranean fever. Semin Arthritis Rheum. 1992; 22:139–50.
crossref
20. Aksentijevich I, D Putnam C, Remmers EF, Mueller JL, Le J, Kolodner RD, et al. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum. 2007; 56:1273–85.
crossref
21. Rosengren S, Mueller JL, Anderson JP, Niehaus BL, Misaghi A, Anderson S, et al. Monocytes from familial cold autoinflammatory syndrome patients are activated by mild hypothermia. J Allergy Clin Immunol. 2007; 119:991–6.
crossref
22. Ravet N, Rouaghe S, Dodé C, Bienvenu J, Stirnemann J, Lévy P, et al. Clinical significance of P46L and R92Q substitutions in the tumour necrosis factor superfamily 1A gene. Ann Rheum Dis. 2006; 65:1158–62.
crossref
23. Lobito AA, Kimberley FC, Muppidi JR, Komarow H, Jackson AJ, Hull KM, et al. Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood. 2006; 108:1320–7.
crossref
24. McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999; 97:133–44.
crossref
25. Houten SM, Kuis W, Duran M, de Koning TJ, van Royen-Kerkhof A, Romeijn GJ, et al. Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobu-linaemia D and periodic fever syndrome. Nat Genet. 1999; 22:175–7.
crossref
26. Frenkel J, Rijkers GT, Mandey SH, Buurman SW, Houten SM, Wanders RJ, et al. Lack of isoprenoid products raises ex vivo interleukin-1beta secretion in hyperimmunog-lobulinemia D and periodic fever syndrome. Arthritis Rheum. 2002; 46:2794–803.
27. Neven B, Valayannopoulos V, Quartier P, Blanche S, Prieur AM, Debré M, et al. Allogeneic bone marrow transplantation in mevalonic aciduria. N Engl J Med. 2007; 356:2700–3.
crossref
28. Goldbach-Mansky R, Dailey NJ, Canna SW, Gelabert A, Jones J, Rubin BI, et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med. 2006; 355:581–92.
29. O'Connell SM, O'Regan GM, Bolger T, Hoffman HM, Cant A, Irvine AD, et al. Response to IL-1-receptor antagonist in a child with familial cold autoinflammatory syndrome. Pediatr Dermatol. 2007; 24:85–9.
30. Matsubara T, Hasegawa M, Shiraishi M, Hoffman HM, Ichiyama T, Tanaka T, et al. A severe case of chronic infantile neurologic, cutaneous, articular syndrome treated with biologic agents. Arthritis Rheum. 2006; 54:2314–20.
crossref
31. Lachmann HJ, Goodman HJ, Gilbertson JA, Gallimore JR, Sabin CA, Gillmore JD, et al. Natural history and outcome in systemic AA amyloidosis. N Engl J Med. 2007; 356:2361–71.
crossref
32. Feramisco JD, Sadreyev RI, Murray ML, Grishin NV, Tsao H. Phenotypic and genotypic analyses of genetic skin disease through the Online Mendelian Inheritance in Man (OMIM) database. J Invest Dermatol. 2009; 129:2628–36.
crossref
33. Direskeneli H. Autoimmunity vs autoinflammation in Behcet's disease: do we oversimplify a complex disorder? Rheumatology (Oxford). 2006; 45:1461–5.
crossref
34. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006; 440:237–41.
crossref
35. Pope RM, Tschopp J. The role of interleukin-1 and the inflammasome in gout: implications for therapy. Arthritis Rheum. 2007; 56:3183–8.
crossref
36. Ozen S, Bilginer Y. A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin. Nat Rev Rheumatol. 2014; 10:135–47.
crossref
37. Shinar Y, Obici L, Aksentijevich I, Bennetts B, Austrup F, Ceccherini I, et al. European Molecular Genetics Quality Network. Guidelines for the genetic diagnosis of hereditary recurrent fevers. Ann Rheum Dis. 2012; 71:1599–605.
crossref
38. Caorsi R, Federici S, Gattorno M. Biologic drugs in autoinflammatory syndromes. Autoimmun Rev. 2012; 12:81–6.
crossref
39. Hoffman HM, Throne ML, Amar NJ, Sebai M, Kivitz AJ, Kavanaugh A, et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential place-bo-controlled studies. Arthritis Rheum. 2008; 58:2443–52.
crossref
40. Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P, et al. Canakinumab in CAPS Study Group. Use of canakinumab in the cry-opyrin-associated periodic syndrome. N Engl J Med. 2009; 360:2416–25.
crossref
41. Bulua AC, Mogul DB, Aksentijevich I, Singh H, He DY, Muenz LR, et al. Efficacy of etanercept in the tumor necrosis factor receptor-associated periodic syndrome: a prospective, open-label, dose-escalation study. Arthritis Rheum. 2012; 64:908–13.
crossref
42. Kallinich T, Haffner D, Niehues T, Huss K, Lainka E, Neudorf U, et al. Colchicine use in children and adolescents with familial Mediterranean fever: literature review and consensus statement. Pediatrics. 2007; 119:e474–83.
crossref
43. Ter Haar N, Lachmann H, Özen S, Woo P, Uziel Y, Modesto C, et al. Paediatric Rheumatology International Trials Organisation (PRINTO) and the Eurofever/Eurotraps Projects. Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review. Ann Rheum Dis. 2013; 72:678–85.
crossref
44. Milman N, Andersen CB, Hansen A, van Overeem Hansen T, Nielsen FC, Fledelius H, et al. Favourable effect of TNF-alpha inhibitor (infliximab) on Blau syndrome in monozygotic twins with a de novo CARD15 mutation. APMIS. 2006; 114:912–9.
45. Crittenden DB, Pillinger MH. New therapies for gout. Annu Rev Med. 2013; 64:325–37.
crossref

Figure 1.
The schematic pathway of inflammasome activation and secretion of Interleukin-1 (IL-1). PAMP: pathogen associated molecular pattern, DAMP: damage associated molecular pattern, LRR: leucin repeat region, PYD: pyrin domain, ASC: apotosis-associated speck-like protein containing CARD (A: dashed box shows detailed structure of pyrin domain).
jrd-21-228f1.tif
Figure 2.
Molecular targets of monogenic autoinflammatory syndromes. Mutated proteins are marked as stars. PAMP: pathogen associated molecular pattern, DAMP: damage associated molecular pattern, LRR: leucin repeat region, PYD: pyrin domain (dashed box shows detailed structure of pyrin domain).
jrd-21-228f2.tif
Figure 3.
Diagnostic flow sheet for evaluating autoinflammatory diseases.
jrd-21-228f3.tif
Table 1.
Classification of pattern-recognition receptor
Secreted Transmembrane Cytosolic
Collectin Toll-like receptor (TLR) RIG-I-like receptor (RIR)
Ficolin C-type lectin NLR*
Pentraxin   Absent in melanoma 2 (AIM2)
    Interferon-inducible protein 16 (IFI16)

* NLR: nucleotide binding domain leucin rich repeat containing receptor.

Table 2.
Classification of monogenic autoinflammatory diseases by clinical features
  Disease Gene Protein Transmission
Periodic/Recurrent fever FMF MEVF Pyrin AR
    16p13.3    
  MKD MVK Mevalonate kinase AR
    12q24    
  TRAPS TNFRSF1A p55 TNF receptor AD
    12p13    
Cryopyrinopathies FCAS, MWS CIAS1/NALP3 Cryopyrin AD
  CINCA 1q44    
Granulomatous disorders Blau's syndrome CARD15/NOD2 CARD15 AD
    16q12    
Pyogenic disorders PAPA syndrome PSTPIP1 PSTPIP1 AD
    15q24-q25.1    
  DIRA IL1RN IL1 receptor antagonist AR
    2q    

FMF: Familial Mediterranean fever, MKD: Mevalonate kinase deficiency, TRAPS: TNF receptor-associated periodic syndrome, AD: autosomal dominant, AR: autosomal recessive, FCAS: familial cold autoinflammatory syndrome, MWS: Muckle-Wells syndrome, CINCA: chronic infantile neurological cutaneous and articular syndrome, PAPA: pyogenic sterile arthritis, pyoderma gangrenosum and acne syndrome.

Table 3.
Drug treatment for various autoinflammatory diseases
  Disease Drugs Evidence
periodic/recurrent fever FMF Colchicine +++
    Anti-IL-1 ++
    Anti-TNF +
  MKD Systemic steroids ++
    Anti-IL-1 +
    Anti-TNF +
  TRAPS Systemic steroids ++
    Etanercept ++
    Infliximab -
    Anakinra +
Cryopyrinopathies FCAS, MWS Anti-IL-1 (anakinra, rilonacept, canakinumab) ++
  CINCA    
Granulomatous disorders Blau's syndrome Systemic steroids +
    Cyclosporin A +
    Methotrexate +
    Anti-IL-1/anti-TNF +
Pyogenic disorders PAPA syndrome Systemic steroids ++
    Anti-IL-1 +
    Anti-TNF +
  DIRA Anakinra +++
Systemic rheumatic diseases Behcet disease Colchicine +++
    Cyclosporin A ++
    Anti-TNF +
  AOSD* Systemic steroids +++
    Anakinra ++
  JIA Anti-TNF ++
    Anti-IL-1 +
  Gout Colchicine +++
    Anti-IL-1 ++
  SAPHO Anti-TNF ++
    Anakinra +

* AOSD: adult onset Still's disease

JIA: juvenile idiopathic arthritis

SAPHO: syndrome of sacroilitis, acne, pustulosis, hyperostosis, osteitis.

TOOLS
Similar articles