Journal List > J Rheum Dis > v.20(6) > 1064076

Kim, Hwang, and Kim: Systems Approach to Rheumatoid Arthritis

Abstract

Phenotypic characteristics of complex diseases such as rheumatoid arthritis are a consequence of interactions of genetic and environmental factors. Biomolecules closely interact with other molecular components and form functional modules, resulting in significant biologic action capability. While traditional biochemical research focuses on a single disease using narrowly constrained data, systems biology aims to interpret large volumes of highly complex and multilevel data obtained from high-through-put technologies to under-stand how biological systems function as a whole. Such a systems approach to complex diseases, so-called network medicine, can shape our comprehensive understanding of disease mechanisms by identifying modules temporally and spatially perturbed in the context of health and diseases. Given the unmet needs for diagnosis, monitoring, and treatment in rheumatoid arthritis, systems biology is obviously an emerging powerful tool to gain insight into disease mechanisms, study comorbidities, analyze therapeutic drugs and their targets, and discover novel network-based biomarkers.

References

1. Jin W, Qin P, Lou H, Jin L, Xu S. A systematic characterization of genes underlying both complex and Mendelian diseases. Hum Mol Genet. 2012; 21:1611–24.
crossref
2. Chuang HY, Hofree M, Ideker T. A decade of systems biology. Annu Rev Cell Dev Biol. 2010; 26:721–44.
crossref
3. Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet. 2001; 358:903–11.
crossref
4. Rubbert-Roth A, Finckh A. Treatment options in patients with rheumatoid arthritis failing initial TNF inhibitor therapy: a critical review. Arthritis Res Ther. 2009; 11(Suppl 1):S1.
crossref
5. Tanaka Y. Next stage of RA treatment: is TNF inhibitor- free remission a possible treatment goal? Ann Rheum Dis. 2013; 72(Suppl 2):ii124–7.
6. Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, et al. Antitumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Antitumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med. 2000; 343:1594–602.
7. Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, et al. Adalimumab, a fully human antitumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 2003; 48:35–45.
8. Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med. 1999; 340:253–9.
crossref
9. Finckh A, Simard JF, Gabay C, Guerne PA. SCQM physicians. Evidence for differential acquired drug resist-ance to anti-tumour necrosis factor agents in rheumatoid arthritis. Ann Rheum Dis. 2006; 65:746–52.
crossref
10. Prince FH, Bykerk VP, Shadick NA, Lu B, Cui J, Frits M, et al. Sustained rheumatoid arthritis remission is uncommon in clinical practice. Arthritis Res Ther. 2012; 14:R68.
crossref
11. Klarenbeek NB, van der Kooij SM, Gü ler-Yüksel M, van Groenendael JH, Han KH, Kerstens PJ, et al. Discontinuing treatment in patients with rheumatoid arthritis in sustained clinical remission: exploratory analyses from the BeSt study. Ann Rheum Dis. 2011; 70:315–9.
crossref
12. Aguilar-Lozano L, Castillo-Ortiz JD, Vargas-Serafin C, Morales-Torres J, Sanchez-Ortiz A, Sandoval-Castro C, et al. Sustained clinical remission and rate of relapse after tocilizumab withdrawal in patients with rheumatoid arthritis. J Rheumatol. 2013; 40:1069–73.
crossref
13. Ku CS, Loy EY, Pawitan Y, Chia KS. The pursuit of ge-nome-wide association studies: where are we now? J Hum Genet. 2010; 55:195–206.
crossref
14. Ormond KE, Wheeler MT, Hudgins L, Klein TE, Butte AJ, Altman RB, et al. Challenges in the clinical application of whole-genome sequencing. Lancet. 2010; 375:1749–51.
crossref
15. Wang J, Zhang Y, Marian C, Ressom HW. Identification of aberrant pathways and network activities from high-throughput data. Brief Bioinform. 2012; 13:406–19.
crossref
16. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011; 12:56–68.
crossref
17. Likić VA, McConville MJ, Lithgow T, Bacic A. Systems biology: the next frontier for bioinformatics. Adv Bioinformatics. 2010; 268925.
crossref
18. Vaughan C. The rise of systems biology. UCSF Magazine. 2004; 24.
19. Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet. 2001; 2:343–72.
crossref
20. MacLellan WR, Wang Y, Lusis AJ. Systems-based approaches to cardiovascular disease. Nat Rev Cardiol. 2012; 9:172–84.
crossref
21. Furlong LI. Human diseases through the lens of network biology. Trends Genet. 2013; 29:150–9.
crossref
22. Amberger J, Bocchini CA, Scott AF, Hamosh A. McKusick's Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res. 2009; 37:D793–6.
23. Gursoy A, Keskin O, Nussinov R. Topological properties of protein interaction networks from a structural perspective. Biochem Soc Trans. 2008; 36:1398–403.
crossref
24. Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001; 411:41–2.
crossref
25. Zotenko E, Mestre J, O'Leary DP, Przytycka TM. Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput Biol. 2008; 4:e1000140.
crossref
26. Zhu X, Gerstein M, Snyder M. Getting connected: analysis and principles of biological networks. Genes Dev. 2007; 21:1010–24.
crossref
27. Koutsogiannouli E, Papavassiliou AG, Papanikolaou NA. Complexity in cancer biology: is systems biology the an-swer? Cancer Med. 2013; 2:164–77.
crossref
28. Bauer-Mehren A, Bundschus M, Rautschka M, Mayer MA, Sanz F, Furlong LI. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases. PLoS One. 2011; 6:e20284.
crossref
29. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci U S A. 2007; 104:8685–90.
crossref
30. Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, Butte AJ. Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol. 2010; 6:e1000662.
crossref
31. Cho DY, Kim YA, Przytycka TM. Chapter 5: Network biology approach to complex diseases. PLoS Comput Biol. 2012; 8:e1002820.
crossref
32. Navlakha S, Kingsford C. The power of protein interaction networks for associating genes with diseases. Bioinformatics. 2010; 26:1057–63.
crossref
33. Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein-protein interactions. J Med Genet. 2006; 43:691–8.
crossref
34. Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of human disease genes. Mol Syst Biol. 2008; 4:189.
crossref
35. Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet. 2008; 82:949–58.
crossref
36. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol. 2010; 6:e1000641.
crossref
37. Chiche L, Jourde-Chiche N, Pascual V, Chaussabel D. Current perspectives on systems immunology approaches to rheumatic diseases. Arthritis Rheum. 2013; 65:1407–17.
38. Sirota M, Butte AJ. The role of bioinformatics in studying rheumatic and autoimmune disorders. Nat Rev Rheumatol. 2011; 7:489–94.
crossref
39. Toonen EJ, Barrera P, Radstake TR, van Riel PL, Scheffer H, Franke B, et al. Gene expression profiling in rheumatoid arthritis: current concepts and future directions. Ann Rheum Dis. 2008; 67:1663–9.
crossref
40. Viatte S, Plant D, Raychaudhuri S. Genetics and epi- genetics of rheumatoid arthritis. Nat Rev Rheumatol. 2013; 9:141–53.
41. Nakaoka H, Cui T, Tajima A, Oka A, Mitsunaga S, Kashiwase K, et al. A systems genetics approach provides a bridge from discovered genetic variants to biological pathways in rheumatoid arthritis. PLoS One. 2011; 6:e25389.
crossref
42. Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature. 2003; 426:454–60.
crossref
43. You S, Cho CS, Lee I, Hood L, Hwang D, Kim WU. A systems approach to rheumatoid arthritis. PLoS One. 2012; 7:e51508.
crossref
44. Keystone E, Burmester GR, Furie R, Loveless JE, Emery P, Kremer J, et al. Improvement in patient-reported outcomes in a rituximab trial in patients with severe rheumatoid arthritis refractory to antitumor necrosis factor therapy. Arthritis Rheum. 2008; 59:785–93.
crossref
45. Yoon HJ, You S, Yoo SA, Kim NH, Kwon HM, Yoon CH, et al. NF-AT5 is a critical regulator of inflammatory arthritis. Arthritis Rheum. 2011; 63:1843–52.
crossref
46. Wu G, Zhu L, Dent JE, Nardini C. A comprehensive molecular interaction map for rheumatoid arthritis. PLoS One. 2010; 5:e10137.
crossref
47. Xing H, McDonagh PD, Bienkowska J, Cashorali T, Runge K, Miller RE, et al. Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis. PLoS Comput Biol. 2011; 7:e1001105.
crossref
48. Schiff M. Abatacept treatment for rheumatoid arthritis. Rheumatology (Oxford). 2011; 50:437–49.
crossref
49. Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, et al. An empirical framework for binary interactome mapping. Nat Methods. 2009; 6:83–90.
crossref
50. Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M, et al. Estimating the size of the human interactome. Proc Natl Acad Sci U S A. 2008; 105:6959–64.
crossref
51. Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet. 2013; 14:35–48.
crossref
52. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004; 431:931–45.
53. Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol. 2004; 8:33–41.
54. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011; 365:2205–19.
crossref
55. Bottini N, Firestein GS. Duality of fibroblast-like syno-viocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol. 2013; 9:24–33.
crossref
56. Frenkel-Morgenstern M, Lacroix V, Ezkurdia I, Levin Y, Gabashvili A, Prilusky J, et al. Chimeras taking shape: potential functions of proteins encoded by chimeric RNA transcripts. Genome Res. 2012; 22:1231–42.
crossref
57. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011; 146:353–8.
crossref
58. Baker M. Proteomics: The interaction map. Nature. 2012; 484:271–5.
59. Bensimon A, Heck AJ, Aebersold R. Mass spectrome-try-based proteomics and network biology. Annu Rev Biochem. 2012; 81:379–405.
crossref
60. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Inflammation and Host Response to Injury, Large Scale Collaborative Research Program. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013; 110:3507–12.
61. Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M. Drug-target network. Nat Biotechnol. 2007; 25:1119–26.
crossref

Figure 1.
Systems genetics and techniques for analysis of complex disease. NGS, next generation sequencing; 2D-PAGE, two-dimensional polyacrylamide gel electrophoresis; MALDI- TOF-MS, matrix-assisted laser desorption/ionization-time-of-fl ight mass spectrometry; CE-ESI-MS, capillary electrophoresis coupled with electrospray ionization mass spectrometry; NMR, nuclear magnetic resonance; GC-MS, gas chromatography-mass spectrometry; LC-MS, liquid chromatography-mass spectrometry.
jrd-20-348f1.tif
Figure 2.
Transformation of data into network matrix and its components.
jrd-20-348f2.tif
TOOLS
Similar articles