Journal List > Nat Prod Sci > v.24(1) > 1060709

Ali, Brada, Fauconnier, and Kenne: Optimization of Algerian Thymus fontanesii Boiss. & Reut Essential Oil Extraction by Electromagnetic Induction Heating

Abstract

The present study deals with the determination of optimal values of operating parameters such as the temperature of heating, the mass of the plant material and the volume of water leading to the best yield of electromagnetic induction (EMI) heating extraction of Algerian Thymus fontanesii essential oil. After an appropriate choice of the three critical variables, eight experiments leaded to a mathematical model as a first-degree polynomial presenting the response function (yield) in the relation to the operating parameters. From the retained model, we were able to calculate the average response, the different effects and their interactions. The maximum of essential oil recovery percentage relative to the initial mass of plant material was 1.69%, and was obtained at (140oC, 250 g and 4.5 L). The chemical composition of the Algerian T. fontanesii essential oil under the obtained optimal conditions (140oC, 250 g and 4.5 L), determined by GC/MS and GC/FID, reveled of the presence of major components such as: carvacrol (70.6 ± 0.1%), followed by p-cymene (8.2 ± 0.2%).

References

(1). Morales R.., Stahl-Biskup E.., Sáez, F. The history botany and taxonomy of the genus Thymus. Thyme: the genus Thymus; Medicinal and Aromatic Plants; Taylor and Francis: U.K,. 2002. 1–43.
(2). Nabavi S. M.., Marchese A.., Izadi M.., Curti V.., Daglia M.., Nabavi S. F.Food Chem. 2015. 173:339–347.
(3). Barros L.., Heleno S. A.., Carvalho A. M.., Ferreira I. C.LWT-Food Sci. Technol. 2010. 43:544–550.
(4). Zarzuelo A.., Crespo E.The medicinal and non-medicinal uses of thyme. In Thyme: the genus Thymus, CRC Press:. 2002.
(5). Mann J.Phytochemistry. 1998. 48:585.
(6). Casiglia S.., Bruno M.., Scandolera E.., Senatore F.Arab. J. Chem, In Press, 2015. In Press,. 2015.
(7). Stahl-Biskup E.., Sáez F.Thyme: the genus Thymus; Medicinal and Aromatic Plants; Taylor and Francis: London,. 2002.
(8). Ghannadi A.., Sajjadi S. E.., Kabouche A. Z.Naturforsch. C. 2004. 59:187–189.
(9). Starmans D. A.., Nijhuis H. H.Trends Food Sci. Technol. 1996. 7:191–197.
crossref
(10). Wang L.., Weller C. L.Trends Food Sci. Technol. 2006. 17:300–312.
(11). El Asbahani A.., Miladi K.., Badri W.., Sala M.., Aït Addi E. H.., Casabianca H.., El Mousadik A.., Hartmann D.., Jilale A.., Renaud F. N. R.., Elaissari A.Int. J. Pharm. 2015. 483:220–243.
(12). Ammar A. H.., Zagrouba F.., Romdhane M.Flavour Frag. J. 2010. 25:503–507.
(13). Adams R. P.Quadrupole mass spectra of compounds listed in order of their retention time on DB-5. Identification of essential oils components by gas chromatography: quadrupole mass spectroscopy; Allured Publishing Corporation: USA,. 2001. , 3rd ed.
(14). Joulain D.., König, W. A. J. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. E.B. –Verlag Hambourg J.Nat. Prod.,. 1999. 62(8):1212–1213.
(15). Babushok V. I.., Linstrom P. J.., Zenkevich I. G. J.Phys. Chem. Ref. Data. 2011. 40:043101.
(16). Huiping L.., Guoqun Z.., Shanting N.., Yiguo L.Comput. Mater. Sci. 2007. 38:561–570.
(17). Ravikumar K.., Krishnan S.., Ramalingam S.., Balu K.Dyes Pigm. 2007. 72:66–74.
(18). Bekhechi C.., Bekkara F. A.., Abdelouahid D. E.., Tomi F.., Casanova J. J.Essent. Oil Res. 2007. 19:594–596.
(19). Sidali L.., Brada M.., Fauconnier M. L.., Lognay G.., Heuskin S.PhytoChem Biosub J. 2017. 11:11.
(20). Mouhi L.., Moghrani H.., Nasrallah N.., Amrane A.., Maachi R. J.Food Biochem. 2017. 41:1–9.
(21). Dob T.., Dahmane D.., Benabdelkader T.., Chelghoum C.Pharm. Biol. 2006. 44:607–612.
(22). Bailer J.., Aichinger T.., Hackl G.., de Hueber K.., Dachler M.Ind. Crops Prod. 2001. 14:229–239.
(23). Desai M. A.., Parikh J.., De A. K.Modelling and optimization studies on extraction of lemongrass oil from Cymbopogon flexuosus (Steud.) Wats Chem. Eng. Res. Des. 2014. 92:793–803.

Fig. 1.
Device of electromagnetic induction heating assisted extraction.
nps-24-71f1.tif
Fig. 2.
Interaction effects of parameters on the essential oil yield using the 2D contours: (a): mass and volume, (b) temperature and volume, (c) Temperature and mass.
nps-24-71f2.tif
Fig. 3.
Comparison between calculated and experimental yields.
nps-24-71f3.tif
Table 1.
Codes and levels of independent variables used in the experimental design
Independent variables Symbols Coded levels
Low (−1) High (+1)
Temperature (°C) X1 140 220
Mass (g) X2 100 250
Volume (L) X3 2 4.5
Table 2.
Experimental matrix
Run Independent coded variables Yield
X1 X2 X3 Exp (%) Cal (%)
1 –1 –1 –1 0.81 0.791
2 1 –1 –1 0.73 0,748
3 –1 1 –1 1.48 1.498
4 1 1 –1 1.27 1.251
5 –1 –1 1 0.94 0.958
6 1 –1 1 0.89 0.871
7 –1 1 1 1.69 1.671
8 1 1 1 1.36 1.378
Table 3.
ANOVA of the fitted model
Statistics
Factors (coded) Effect Standard error Sum of squares DF Mean squares F-value ta pb Remark
a0 1.1463 0.0187         61.13 0.01 significant
a1 –0.0837 0.0187 0.0561 1 0.0561 19.95 4.47 0.14  
a2 0.3037 0.0187 0.7381 1 0.7381 262.44 –16.2 0.039 signifucant
a3 0.0737 0.0187 0.0435 1 0.0435 15.47 –3.93 0.158  
a12 –0.0512 0.0187 0.0210 1 0.0210 7.47 –2.73 0.223  
a13 –0.0112 0.0187 0.0010 1 0.0010 0.36 –0.6 0.656  
a23 –0.0013 0.0187 0,0001 1 0,0001 0.00 0.07 0.958  
Pure error     0.0028 1 0.0028        
Total     0.8625 7          

R2 = 99.67%

Adjusted R2 = 97.72%

DF: Degree of freedom

a Value of the coefficient of regression for the error, measures it how big the effect is regarding the mistake standard or redidue.

b Probality of significance. If the level of confidence is 95%, P < 0.05 considered to be significant.

Table 4.
Chemical composition of T. fontanesii essential oil
Compound name IR       Peak area      
      Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8
1 α-Thujene 936.3 2 ± 0.06 1.5 ± 0.011 1.63 ± 0.008 0.92 ± 0.004 0.8 ± 0.009 0.28 ± 0.003
2 α-Pinene 946.5 2.45 ± 0.07 1.04 ± 0.01 2.07 ± 0.01 1.8 ± 0.01 1.6 ± 0.01 1 ±0.1 0.14 ± 0.004 1.67 ± 0.025
3 Camphene 967.2 0.15 ± 0.003 1.4 ± 0.02 0.11 ± 0.0005 0.12 ± 0.0008 0.1 ± 0.0003 0.1 ± 0.001
4 β-Pinene 1024.3 0.35 ± 0.02 0.21 ± 0.008 0.21 ± 0.004 0.32 ± 0.001 0.3 ± 0.002
5 β-Myrcene 1097 2.2 ± 0.04 0.27 ± 0.0007 1.77 ± 0.018 0.81 ± 0.01 1.4 ± 0.006 1.5 ± 0.1 0.24 ± 0.0005 1.05 ± 0.007
6 α-Phellandrene 1035.9 0.24 ± 0.004 1.6 ± 0.1 0.18 ± 0.0003 0.22 ± 0.0005 0.18 ± 0.0004 0.2 ± 0.002   0.13 ± 0.004
7 α-Terpinene 1098.7 1.75 ± 0.2 0.75 ± 0.06 1.32 ± 0.008 1.74 ± 0.007 1.53 ± 0.006 1,6 ± 0.1 0.32 ± 0.0094 1.08 ± 0.01
8 P-cymene 1020.4 7.17 ± 0.1 1.64 ± 0.02 4.9 ± 0.22 4.6 ± 0.02 9.01 ± 0.03 6.9 ± 0.6 8.2 ± 0.2 13.1 ± 0.1
9 Limonene 1029.3 0.8 ± 0.008 0.51 ± 0.1 0.6 ± 0.006 0.6 ± 0.02 0.66 ± 0.0034 0,6 ± 0.008 0.34 ± 0.01 0.9 ± 0.01
10 γ-Terpinene 1004.4 11.8 ± 0.13 10.2 ± 0.08 10.4 ± 0.034 11.9 ± 0.04 10.3 ± 0.02 11.5 ± 0.1 2.45 ± 0.06 7.78 ± 0.06
11 β-Terpineol, cis 1024 0.08 ± 0.001 0.34 ± 0.01 0.2 ± 0.0001 0.12 ± 0.003
12 trans-Sabinene hydrate 1024   0.13 ± 0.006 0.11 ± 0.01
13 α-Terpinolene 1092   0.14 ± 0.009 0.09 ± 0.0005 tr tr 0.11 ± 0.005
14 Linalool 1101.6 2.65 ± 0.01 6.2 ± 0.1 2.23 ± 0.001 2.1 ± 0.003 2.7 ± 0.02 0.1 ± 0.001 3.07 ± 0.08 2.33 ± 0.15
15 Borneol 1174 0.17 ± 0.004 0.33 ± 0.02 0.57 ± 0.034 0.16 ± 0.005 0.18 ± 0.006 3.5 ± 0.003 0.21 ± 0.006 0.2 ± 0.03
16 Terpinen-4-ol 1184.4 0.63 ± 0.1 0.67 ± 0.01 0.36 ± 0.01 0.3 ± 0.001 0.32 ± 0.05
17 Carvacrol, methyl ether 1248.1 0.51 ± 0.005 0.75 ± 0.001 0.37 ± 0.025 0.5 ± 0.0009 0.54 ± 0.02 0.7 ± 0.00 0.12 ± 0.006 0.33 ± 0.0001
18 Thymol 1293.9 3.9 ± 0.14 4.05 ± 0.01 3.05 ± 0.6 3.4 ± 0.18 3.52 ± 0.01 4.5 ± 0.005 1.02 ± 0.034 0.9 ± 0.009
19 Carvacrol 1313.6 61.27 ± 0.34 55.9 ± 0.09 68.7 ± 0.25 66.7 ± 0.54 62.9 ± 0.26 61.7 ± 0.1 70.6 ± 0.11 66.3 ± 0.6
20 α-Gurjunene 1425.9 0.12 ± 0.01 0.14 ± 0.0002 0.13 ± 0.00015 0.18 ± 0.0004 0.21 ± 0.001 0.1 ± 0.0006 tr 0.35 ± 0.04
21 Caryophyllene 1437.4 0.14 ± 0.03 0.4 ± 0.002 0.14 ± 0.002 0.2 ± 0.0006 0.25 ± 0.0006 0.2 ± 0.0001 1.26 ± 0.03 0.16 ± 0.002
22 Alloaromadendrene 1457 tr 0.1 ± 0.001 0.11 ± 0.0007
23 α-Caryophyllene 1500 4.22 ± 0.11
24 Butyl Hydroxy Toluene 1521 0.33 ± 0.004 0.35 ± 0.001 0.4 ± 0.01 0.38 ± 0.009
25 α-Amorphene 1530 0.24 ± 0.0007 0.31 ± 0.01
26 δ-Cadinene 1536.9   tr 0.1 ± 0.0009 0.44 ± 0.007
27 spathulenol 1597.9 0.22 ± 0.004 0.28 ± 0.3 0.27 ± 0.03 0.12 ± 0.006 0.19 ± 0.001 0.4 ± 0.001 0.31 ± 0.007 0.3 ± 0.002
28 Caryophyllene oxide 1600 0.06 ± 0.0008 0.14 ± 0.003 0.15 ± 0.001
29 α-Cadinol 1662.3 0.2 ± 0.0002
  Monoterpenes (%):   29 16.29 23.06 23,.63 26.24 24.81 11.7 26.22
  Oxygenated monoterpenes ( (%): 69.13 67.9 74.92 73.22 62.9 70.8 75.34 70.06
  Sesquiterpenes (%):   0.6 0.54 0.51 0.73 0.86 0.5 6.72 0.51
  Oxygenated sesquiterpenes (%): 0.22 0.28 0.33 0.12 0.19 0.4 0.45 0.45
  Identified compounds (%):   98.95 85.01 98.82 97.7 90.19 96.51 94.21 97.24

RIb: Retention indices relative to C7 – C30 on the HP-5MS capillary column

tr: traces (< 0.1%)

TOOLS
Similar articles