Journal List > Nat Prod Sci > v.23(1) > 1060693

Manivannan and Shopna: Anti-microbial and Anti-inflammatory Activity of New 4-methoxy-3-(methoxymethyl) Phenol and (E)-N'-(5-bromo-2-methoxybenzylidene)-4-methoxy Benzohydrazide Isolated from Calotropis gigantean white

Abstract

A new phenol and hydrazide derivatives were obtained for the first time from the C. giganteawhite by silica gel column chromatography. The structure of the isolated compounds was identified by UV, IR NMR and MS. C. gigantea was scientifically reported for several medicinal properties viz. analgesic, antimicrobial and cytotoxic. In this screening work, anti-microbial activity of test compounds was found to be active against all organisms. Additionally, anti-inflammatory activity of the test groups has reduced the thickness of edema of the hind paw compared to the control group.

References

(1). Subramanian S. P.., Saratha V. J.Pharm. Res. 2010. 3:517–521.
(2). Kirtikar K. R.., Basu B.D.Indian Medicinal Plants: Volume III. 2nd ed. International Book Distributors: India;1999. p. 191–192.
(3). Habib M. R.., Karim M. R.Microbiology. 2009. 37:31–36.
(4). Chitme H.R.; Chandra, M.; Kaushik, S.J. Pharm. Pharm. Sci. 2004. 7:70–75.
(5). Chitme H. R.., Chandra R.., Kaushik S.Phytother. Res. 2005. 19:454–456.
crossref
(6). Jeyachandran R.., Mahesh A.Res. J. Micro. 2007. 2:645–649.
(7). Shah P. M.Clin. Microbiol. Infect. 2005. 11:36–42.
(8). Nair R.., Chanda S.Indian J. Pharmacol. 2006. 38:142–144.
(9). Denko C.W.Biochemistry of Inflammation: The role of leukocyte chemotaxis in inflammation;. Springer Netherlands: London;1992. p. 177–181.
(10). Hajhashemi V.., Sajjadi S. E.., Heshmati M.V.J. Ethnopharmacol. 2009. 124:475–480.
(11). Bauer A.W.., Kirby W.M.., Sherries J. C.., Turck M.Am. J.Clin.Pathol. 1966. 45:493–496.
(12). Wright D.A.., Payne J.P.Br. J.Anesth. 1962. 34:379–385.
(13). Leite L.F.., Ramos M. N.., da Silva J.B.., Miranda A.L.., Fraga C.A.., Barreiro E. J.Farmaco. 1999. 54:747–757.
(14). Lima P.C.., Lima L.M.., da Silva K. C.., Léda P. H.., de Miranda A. L.., Fraga C.A.., Barreiro E. J.Eur. J. Med. Chem. 2000. 35:187–203.
(15). Loncle C.., Brunel J.M.., Vidal N.., Dherbomez M.., Letourneux Y.Eur. J. Med. Chem. 2004. 39:1067–1071.
(16). Todeschini A.R.., De Miranda A.L.P.., Da Silva K. C. M.., Parrini S. C.., Barreiro E. J.Eur. J. Med. Chem. 1998. 33:189–199.
(17). Terzioglu N.., Gürsoy A.Eur. J. Med. Chem. 2003. 38:781–786.
(18). Abadi H.., Eissa A.A.., Hassan G. S.Chem. Pharm. Bull. 2003. 51:838–844.
(19). Kumar D.., Maruthi Kumar N.., Ghosh S.., Shah K.Bioorg. Med. Chem. Lett. 2012. 22:212–215.
(20). Ofner J.., Krüger H. U.., Grothe H.., Schmitt-Kopplin P.., Whitmore K.., Zetzsch C.Atmos. Chem. Phys. 2011. 11:1–15.
(21). Ban H. Y.., Li C. M.ActaCryst. Sec. 2008. E64:2260.
(22). Liu L.., Alam M. S.., Lee D. U.Bull. Korean Chem. Soc. 2012. 33:3361–3367.
(23). Yin H.D.., Hong M.., Wang Q.B.., Xue S.C.., Wang D. Q. J.Organo.Chem. 2005. 690:1669–1676.
(24). Yin H.D.., Chen S. W.Inorg. Chim. Acta. 2006. 359:3330–3338.
(25). Gangoué-Piéboji J.., Pegnyemb D.E.., Niyitegeka D.., Nsangou A.., Eze N.., Minyem C.., Mbing J. N.., Ngassam P.., Tih R. G.., Sodengam B. L.., Bodo B.Ann. Trop. Med. Parasitol. 2006. 100:237–243.
(26). Shan B.., Cai Y.Z.., Brooks J. D.., Corke H.Int. J. Food Microbiol. 2007. 117:112–119.
(27). Katzung B. G.Basic and Clinical pharmacology: 9thedn; McGraw Hill: London,. 2004. 641–646.
(28). Winter C. A.., Risley E. A.., Nuss G. W.Proc. Soc. Exp. Biol. Med. 1962. 111:544–547.
(29). Turner R. A.Screening methods in pharmacology;. Academic Press: New York;1965. , p. p. 158.
(30). Vinegar R.., Truax J. F.., Selph J. L.., Johnston P. R.., Venable A.L.; Mckenzie, K.K. Fed. Proc. 1987. 46:118–126.

Fig. 1.
Chemical structures of compounds 1 and 2 isolated from Calotropis gigantea white.
nps-23-69f1.tif
Table 1.
Anti-microbial activity of phenol 4-methoxy-3-(methoxymethyl) phenol (1) and (E)-N'-(5-bromo-2-methoxybenzylidene)-4-methoxy benzohydrazide (2) extracted from Calotropis gigantea white
Micro organism Zone of inhibition mm in diameter
Compound 1 Compound 2 Standard Antibiotic
Concentration in µg/ml
100 200 100 200
Escherichia coli (MTCC 62) 08 ± 0.98 17 ± 1.28 07 ± 0.84 14 ± 1.34 18 ± 1.22
Staphylococcus aureus (MTCC 87) 05 ± 0.65 13 ± 1.85 04 ± 0.24 11 ± 1.74 17 ± 1.98
Aspergillus flavus (MTCC 96) 09 ± 0.36 14 ± 1.06 02 ± 0.88 09 ± 1.08 12 ± 1.04∗∗
Aspergillus niger (MTCC 107) 10 ± 0.65 13 ± 1.55 05 ± 0.75 08 ± 1.57 12 ± 1.50∗∗
Candida albicans (MTCC 118) 09 ± 0.30 16 ± 1.50 04 ± 0.45 12 ± 1.50 22 ± 1.60∗∗

Standard-Ciprofloxacin

∗∗ Standard-Amphotericin – B

Values are expressed in Mean ± Standard Deviation (M ± SD) (n=3)

Table 2.
Anti-inflammatory activity of phenol 4-methoxy-3-(methoxymethyl) phenol (1) and (E)-N'-(5-bromo-2-methoxybenzylidene)-4-methoxy benzohydrazide (2) extracted from Calotropis gigantea white
S. No. Treatment Anti-inflammatory activity (Cm) (M ± SD)
1 h 2 h 3 h 4 h
1 Normal Control 2.95 ± 0.01 2.93 ± 0.01 2.91 ± 0.05 2.91 ± 0.01
2 Standard (diclofenac sodium 100 mg/kg) 3.40 ± 0.13 3.19 ± 0.14 2.86 ± 0.06 2.65 ± 0.04
3 Compound 1 (100 mg/kg) 3.71 ± 0.08 3.62 ± 0.02 3.54 ± 0.03 3.45 ± 0.03
4 Compound 1 (200 mg/kg) 3.58 ± 0.07 3.24 ± 0.11 3.12 ± 0.06 2.98 ± 0.05
5 Compound 2 (100 mg/kg) 3.59 ± 0.02 3.52 ± 0.06 3.43 ± 0.03 3.30 ± 0.02
6 Compound 2 (200 mg/kg) 3.51 ± 0.03 3.40 ± 0.13 2.94 ± 0.02 2.73 ± 0.04

Values are expressed in mean ± standard deviation (n=6). One-way ANOVA (Dunnett's method) Means for groups in homogeneous subsets are displayed. There is no significant difference between standard and test drug at p > 0.05 significant level.

TOOLS
Similar articles