Journal List > Nat Prod Sci > v.23(1) > 1060689

Lee, Park, Yim, and Choi: Comprehensive Evaluation of the Anti-Helicobacter pylori Activity of Scutellariae Radix

Abstract

The aim of this study was to evaluate the anti-Helicobacter pylori activity of fractions and major aglycon compounds (baicalein, chrysin, oroxylin A, wogonin) of Scutellariae Radix. Minimum inhibitory concentration (MIC) measurement, DPPH radical-scavenging assay, DNA protection assay, and urease inhibition analysis were performed. The ethyl acetate (EtOAc) fraction showed the potent anti-Helicobacter activity, and therefore, compounds in the EtOAc fraction were subjected to further assay. The MICs of chrysin, oroxylin A, and wogonin against Helicobacter pylori 26695 were 6.25, 12.5 and 25 µg/mL, respectively. Baicalein exhibited the most effective DPPH radical-scavenging activity. DNA protection using Fenton reaction, chrysin, oroxylin A, and wogonin showed effective DNA protective effect. This result was also confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Regarding Jack bean urease (0.5 mg/mL, 50 unit/mg) inhibition, 20 mM ofbaicalein and chrysin inhibited urease activity by 88.2% and 72.5%, respectively.

References

(1). Peek R. M.., Blaser M. J.Nat. Rev. Cancer. 2002. 2:28–37.
(2). Kim B. J.., Kim J. G.Kor. J. Med. 2015. 89:133–141.
(3). De Francesco V. D.., Giorgio F.., Hassan C.., Manes G.., Vannella L.., Panella C.., Ierardi E.., Zullo A. J.Gastrointestin. Liver Dis. 2010. 19:409–414.
(4). Jung K. W.., Won Y. J.., Kong H. J.., Oh C. M.., Cho H. S.., Lee D.H.., Lee K. H.Cancer Res. Treat. 2015. 47:127–141.
(5). Shin A.., Park S.., Shin H. R.., Park E. H.., Park S. K.., Oh J. K.., Lim M. K.., Choi B. Y.., Boniol M.., Boffetta P.Ann. Oncol. 2011. 22:1435–1442.
(6). Shin A. S.., Kim J. S.., Park S. H. J.Gastric Cancer. 2011. 11:135–140.
(7). Zhang Q. B.., Nakshabendi I. M.., Mokhashi M. S.., Dawodu J. B.., Gemmell C. G.., Russell R. I.Gut. 1996. 38:841–845.
(8). Shao Z. H.., Li C. Q.., Vanden Hoek T.L.., Becker L. B.., Schumacker P. T.., Wu J.A.., Attele A.S.., Yuan C. S. J.Mol. Cell. Cardiol. 1999. 31:1885–1895.
(9). Huang W. H.., Lee A. R.., Yang C. H.Biosci. Biotechnol. Biochem. 2006. 70:2371–2380.
(10). Wang Y. C.., Huang K. M.Food Chem. Toxicol. 2013. 53:376–383.
(11). Ustün O.., Ozcellik B.., Akyön Y.., Abbasoglu U.., Yesilada E. J.Ethnopharmacol. 2006. 108:457–461.
(12). Kang M. H.., Lee J. H.., Lee Y. S.., Son K. H.., Lee D. H.., Kim Y. S.., Kang S. S.., Bang H. C.., Jeong C. S.Yakhak Hoeji. 2007. 51:68–74.
(13). Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing, 19th Informational Supplement. 2009. . Document M100-S19, CLSI, Wayne, PA.
(14). Li H. B.., Chen F. J.Chromatogr. A. 2005. 1074:107–110.
(15). Choi J. S.., Oh J. I.., Hwang I. T.., Kim S. E.., Chun J. C.., Lee B. H.., Kim J. S.., Kim T. J.., Cho K. Y.Kor. J.Pestic. Sci. 2003. 7:92–99.
(16). Lee J. C.., Kim H. R.., Kim J.., Jang Y. S. J.Agric. Food Chem. 2002. 50:6490–6496.
(17). Weatherburn M. W.Anal. Chem. 1967. 39:971–974.
(18). Choi Y. S.., Cheon J. H.., Lee J. Y.., Kim S. G.., Kim J. S.., Kim N. Y.., Lee D. H.., Kim J. M.., Jung H. C.., Song I. S.Korean J. Gastroenterol. 2006. 48:156–161.
(19). Wu J.., Hu D.., Wang K. X.Zhong Yao Cai. 2008. 31:707–710.
(20). Shin S. J.., Park C. E.., Baek N. I.., Chung I. S.., Park C. H.Biotechnol. Bioprocess Eng. 2009. 14:140–145.
(21). Park C. E.., Park C. H.Korean Chem. Eng. Res. 2013. 51:591–596.
(22). Tan L.., Su J.., Wu D.., Yu X.., Su Z.., He J.., Wu X.., Kong S.., Lai X.., Lin J.., Su Z.Scientific World Journal. 2013. doi: 10.1155/2013/879501.
(23). Yu X. D.., Zheng R. B.., Xie J. H.., Su J. Y.., Huang X. Q.., Wang Y. H.., Zheng Y. F.., Mo Z. Z.., Wu X. L.., Wu D. W.., Liang Y. E.., Zeng H. F.., Su Z. R.., Huang P. J.Ethnopharmacol. 2015. 162:69–78.
(24). Wu D. W.., Yu X. D.., Xie J. H.., Su Z. Q.., Su J. Y.., Tan L. R.., Huang X. Q.., Chen J. N.., Su Z. R.Fitoterapia. 2013. 91:60–67.

Fig. 1.
Chemical Structures of flavonoids from Scutellariae Radix.
nps-23-46f1.tif
Fig. 2.
Chromatogram of five standards (baicalin, baicalein, wogonin, oroxylin A, chrysin) and each fraction of Scutellariae Radixby HPLC analysis. A: five standards; B: total extract; C: EtOAc fraction; D: n-butanol fraction.
nps-23-46f2.tif
Fig. 3.
DPPH radicalscavenging activity of fractionsand compounds from ScutellariaeRadix. Each fraction (A) (0.25 – 2.0 mg/ mL) and compound (B) (0.25 – 1.0 mM) was tested and ascorbic acid and BHA (0.25 mg/mL for fractions, 1 mM for compounds) were used as positive controls. Data represent the mean ± SD of three replicates; ∗p < 0.05, ∗∗p < 0.01, significant difference compared to the negative control.
nps-23-46f3.tif
Fig. 4.
DNA protective effect against hydrogen peroxide of fractions (A) and compounds (B) from Scutellaria Radix. (A) 1: AGS cell; 2: AGS cell + Fenton reagent; 3: AGS cell + Fenton reagent + quercetin; 4: AGS cell + Fenton reagent + total Fr.; 5: AGS cell + Fenton reagent + EtOAc Fr.; 6: AGS cell + Fenton reagent + n-BuOH Fr. (B)1: AGS cell; 2: AGS cell + Fenton reagent; 3: AGS cell + Fenton reagent + quercetin; 4: AGS cell + Fenton reagent+bacialein; 5: AGS cell+Fenton reagent+chrysin; 6: AGS cell + Fenton reagent + oroxylin A; 6: AGS cell + Fenton reagent + wogonin. The concentrations of each fraction and each compound were 0.25 mg/mL and 1 mM respectively.
nps-23-46f4.tif
Fig. 5.
H. pylori urease inhibitory activity of fractions (A) and compounds (B) from Scutellariae Radix. Data represent the means ± SD of three replicates; ∗p < 0.05, ∗∗p < 0.01, significant difference compared to the negative control.
nps-23-46f5.tif
Fig. 6.
Jack bean urease inhibitory activity of four compounds from Scutellariae Radix. Data represent the means ± SD of three replicates; ∗p < 0.05, ∗∗p < 0.01, significant difference compared to the negative control.
nps-23-46f6.tif
Table 1.
Anti-Helicobacter activity of fractions and compounds from Scutellria Radix
Samples H. pylori 26695
MICa (µg/mL) MBCb (µg/mL)
  Total 125 250
Fractions EtOAc 31.25 31.25
BuOH 125 125
Baicalin >250 >250
Baicalein 50 50
Compounds Chrysin 6.25 12.5
Oroxylin A 12.5 25
Wogonin 25 25

a Minimum inhibitory concentration

b Minimum bactericidal concentration

Table 2.
Quantitative analysis of DNA protective effect of fractions and compounds from Scutellria Radix
Groups 1 2 3 4 5 6 7
Fractions 1a 0.523 ± 0.026 0.841 ± 0.047 0.751 ± 0.036 0.834 ± 0.067 0.864 ± 0.038
Compounds 1 0.490 ± 0.025 0.736 ± 0.036 0.637 ± 0.019 0.746 ± 0.046 0.777 ± 0.054 0.775 ± 0.038

a relative band intensity of each sample compared with control (AGS cell). 1: Control (AGS cell); 2: AGS cell + Fenton reagent; 3: AGS cell + Fenton reagent + quercetin; 4: AGS cell + Fenton reagent + total Fr./ bacalein; 5: AGS cell + Fenton reagent + EtOAc Fr./ chrysin; 6: AGS cell + Fenton reagent + n-BuOH Fr./ oroxylin A; 7: AGS cell + Fenton reagent + wogonin.

Table 3.
qRT-PCR analysis of AGS cell DNA damaged by Fenton reaction.
DNA Samples Compounds Ct valuea
AGS cell none 11.437 ± 0.234
AGS cell + Fenton reagents none 29.799 ± 0.215
AGS cell + Fenton reagents Quercetin 12. 352 ± 0.324
AGS cell + Fenton reagents Baicalein 20.799 ± 0.215
AGS cell + Fenton reagents Chrysin 16. 877 ± 0.674
AGS cell + Fenton reagents Oroxylin A 17.719 ± 0.189
AGS cell + Fenton reagents Wogonin 14.417 ± 0.089

a ct value or threshold cycle value is the cycle number at which the fluorescence generated within a reaction crosses the fluorescence threshold. Ct value is inversely proportional to the detectable amount of amplicon product.

TOOLS
Similar articles