Journal List > Nat Prod Sci > v.23(4) > 1060684

Hidayat, Farabi, Harneti, Maharani, Darwati, Mayanti, Setiawan, Supratman, and Shiono: Cytotoxicity and Structure Activity Relationship of Dammarane-Type Triterpenoids from the Bark of Aglaia elliptica against P-388 Murine Leukemia Cells

Abstract

Six dammarane-type triterpenoids, dammar-24-en-3β-ol (1), 3β-epicabraleahydroxy lactone (2), (E)-25-hydroperoxydammar-23-en-3β,20-diol (3), dammar-24-en-3β,20-diol (4), 3β-acetyl-20S, 24S-epoxy-25-hydroxy-dammarane (5), and 3β-epiocotillol (6) were isolated from the methanolic extract of the bark of Aglaia elliptica. The chemical structure were identified on the basis of spectroscopic evidence and by comparison with those spectra previously reported. Compounds 1 – 6 were isolated first time from this plant. Compounds 1 – 6, along with a known synthetic analog, cabraleone (7) were evaluated their cytotoxic activity against P-388 murine leukimia cells in vitro. Among those compounds 3β-acetyl-20S, 24S-epoxy-25-hydroxydammarane (5) showed strongest cytotoxic activity with IC50 value of 8.02 ± 0.06 μM.

References

(1). Pannell C. M.Taxonomic monograph of the genus Aglaia lour (Meliaceae): Kew Bulletin Additional Series XVI; HMSO; Richmond,. 1992. 359–362.
(2). Harneti D.., Tjokronegoro R.., Safari A.., Supratman U.., Loong X.., Mukhtar M. R.., Mohamad K.., Awang K.., Hayashi H.Phytochem. Lett. 2012. 5:496–499.
(3). Muellner A. N.., Samuel R.., Chase M. W.., Pannell C. M.., Greger H.Am. J. Bot. 2005. 92:534–543.
(4). Cui B.., Chai H.., Santisuk T.., Reutrakul V.., Farnsworth N. R.., Cordell G. A.., Pezzuto J. M.., Kinghom A. D.Tetrahedron. 1997. 53:17625–17632.
(5). Ishibashi F.., Satasook C.., Ismant M. B.., Towers G. H. N.Phytochemistry. 1993. 32:307–310. http://www.sciencedirect.com/science/article/pii/S0031942200949860.
(6). Nugroho B. W.., Edrada R. A.., Wray V.., Witte L.., Bringmann G.., Gehling M.., Proksch P.Phytochemistry. 1999. 51:367–376.
(7). Wu T. S.., Liou M. J.., Kuoh C. S.., Teng C. M.., Nagao T.., Lee K. H. J.Nat. Prod. 1997. 60:606–608.
(8). Esimone C. O.., Eck G.., Nworu C. S.., Hoffmann D.., Uberla K.., Proksch P.Phytomedicine. 2010. 17:540–547.
(9). Sianturi J.., Purnamasari M.., Darwati ., Harneti D.., Mayanti T.., Supratman U.., Awang K.., Hayashi H.Phytochem. Lett. 2015. 13:297–301.
(10). Joycharat N.., Plodpai P.., Panthong K.., Yingyongnarongkul B.., Voravuthikunchai S. P.Can. J. Chem. 2010. 88:937–944.
(11). Liu S.., Liu S. B.., Zuo W. J.., Guo Z. K.., Mei W. L.., Dai H. F.Fitoterapia. 2014. 92:93–99.
(12). Yodsaoue O.., Sonprasit J.., Karalai C.., Ponglimanont C.., Tewtrakul S.., Chantrapromma S.Phytochemistry. 2012. 76:83–91.
(13). Cai X. H.., Wang Y. Y.., Zhao P. J.., Li Y.., Luo X. D.Phytochemistry. 2010. 71:1020–1024.
(14). Roux D.., Martin. M.., Adeline M.., Sevenet T.., Hadi A. H.., Pais M.Phytochemistry. 1998. 49:1745–1748.
(15). Xie B. J.., Yang S. P.., Chen H. D.., Yue J. M. J.Nat. Prod. 2007. 70:1532–1535.
(16). Zhang F.., Wang J. S.., Gu Y. C.., Kong L. Y. J.Nat. Prod. 2010. 73:2042–2046.
(17). Mohamad K.., Sévenet T.., Dumontet V.., Pa s M.., Tri M. V.., i Hadi H.., Awang K.., Martin M. T.Phytochemistry. 1999. 51:1031–1037.
(18). Awang K.., Loong X. M.., Leong K. H.., Supratman U.., Litaudon M.., Mukhtar M. R.., Mohamad K.Fitoterapia. 2012. 83:1391–1395.
(19). Mohamad K.., Martin M. T.., Najdar H.., Gaspard C.., Sevenet T.., Awang K.., Hadi H.., Pais M. J.Nat. Prod. 1999. 62:868–872.
(20). Farabi K.., Harneti D.., Nurlelasari; Maharani R.., Hidayat A. T.., Awang K.., Supratman U.., Shiono Y.Phytochem. Lett. 2017. 21:211–215.
(21). Breitmaier E.Structure elucidation by NMR in organic chemistry; John Wiley & Sons,. 2002. , London.
(22). Cysne Jde B.., Braz-Filho R.., Assuncao M. V.., Uchoa D. E.., Silveira E. R.., Pessoa O. D.Magn. Reson. Chem. 2006. 44:641–643.
(23). Phongmaykin J.., Kumamoto T.., Ishikawa T.., Suttisri R.., Saifah E.Arch. Pharm. Res. 2008. 31:21–27.
(24). Zhang F.., Wang J. S.., Gu Y. C.., Kong L. Y. J.Nat. Prod. 2010. 73:2042–2046.
(25). Sahidin ., Hakim E. H.., Juliawaty L. D.., Syah Y. M.., bin Din L.., Ghisalberti E. L.., Latip J.., Said I. M.., Achmad S. A. Z.Naturforsch. C. 2005. 60:723–727.
(26). Alley M. C.., Scudiero D. A.., Monks A.., Hursey M. L.., Czerwinski M. J.., Fine D. L.., Abbott B. J.., Mayo J. G.., Shoemaker R. H.., Boyd M. R.Cancer Res. 1988. 48:589–601.
(27). Hakim E. H.., Achmad S. A.., Juliawaty L. D.., Makmur L.., Syah Y. M.., Aimi A.., Kitajima M.., Takayama H.., Ghisalberti E. L. J.Nat. Med. 2007. 61:229.

Fig. 1.
The structures of 1 – 7 isolated from A. elliptica.
nps-23-291f1.tif
Fig. 2.
Key HMBC (→) and COSY (−) correlations of 1 – 6.
nps-23-291f2.tif
Table 1.
13C-NMR data for compounds 1 – 7 (150 MHz in CDCl3)
No. 1 δc (mult.) 2 δc (mult.) 3 δc (mult.) 4 δc (mult.) 5 δc (mult.) 6 δc (mult.) 7 δc (mult.)
1 33.7 (t) 35.2 (t) 39.1 (t) 33.7 (t) 34.3 (t) 33.7 (t) 34.3 (t)
2 24.6 (t) 33.7 (t) 24.9 (t) 24.9 (t) 24.8 (t) 25.4 (t) 26.0 (t)
3 75.0 (d) 76.3 (d) 79.1 (d) 76.4 (d) 78.5 (d) 76.4 (d) 218.3 (s)
4 37.5 (s) 37.3 (s) 39.0 (s) 37.7 (s) 36.8 (s) 37.3 (s) 37.1 (s)
5 49.2 (d) 49.4 (d) 55.9 (d) 49.6 (d) 50.6 (d) 49.6 (d) 49.9 (d)
6 18.1 (t) 18.3 (t) 18.3 (t) 18.3 (t) 18.2 (t) 18.3 (t) 19.8 (t)
7 35.2 (t) 26.9 (t) 35.3 (t) 35.2 (t) 35.3 (t) 34.8 (t) 34.8 (t)
8 40.6 (s) 40.6 (s) 40.4 (s) 40.7 (s) 40.6 (s) 40.7 (s) 40.5 (s)
9 49.5 (d) 50.4 (d) 50.7 (d) 50.4 (d) 50.8 (d) 50.7 (d) 50.4 (d)
10 37.2 (d) 37.7 (s) 37.2 (s) 37.3 (s) 37.2 (s) 37.7 (s) 37.2 (s)
11 21.3 (t) 25.4 (t) 21.6 (t) 21.4 (t) 21.7 (t) 21.7 (t) 21.2 (t)
12 25.7 (t) 21.3 (t) 27.5 (t) 25.4 (t) 27.1 (t) 27.1 (t) 27.4 (t)
13 42.0 (d) 43.2 (d) 42.5 (d) 42.3 (d) 42.8 (d) 42.8 (d) 43.2 (d)
14 50.3 (s) 50.3 (s) 50.4 (s) 50.5 (s) 50.2 (s) 50.2 (s) 50.2 (s)
15 31.1 (t) 31.2 (t) 31.2 (t) 31.2 (t) 31.6 (t) 31.5 (t) 31.6 (t)
16 27.7 (t) 25.1 (t) 27.6 (t) 27.6 (t) 25.9 (t) 25.9 (t) 26.6 (t)
17 50.6 (d) 49.5 (d) 50.3 (d) 49.8 (d) 49.9 (d) 49.8 (d) 55.5 (d)
18 15.8 (q) 15.6 (q) 15.6 (q) 15.6 (q) 15.6 (q) 16.2 (q) 16.2 (q)
19 15.1 (q) 16.1 (q) 16.5 (q) 16.1 (q) 16.1 (q) 16.6 (q) 16.5 (q)
20 38.7 (d) 90.3 (s) 75.2 (s) 75.5 (s) 86.7 (s) 86.7 (s) 86.7 (s)
21 25.1 (q) 25.4 (q) 25.8 (q) 25.5 (q) 27.4 (q) 27.3 (q) 27.2 (q)
22 41.2 (t) 31.3 (t) 43.4 (t) 40.6 (t) 35.2 (t) 35.3 (t) 34.9 (t)
23 22.5 (t) 29.3 (t) 127.4 (d) 22.6 (t) 26.4 (t) 26.4 (t) 26.9 (t)
24 125.3 (d) 176.9 (s) 137.4 (d) 124.8 (d) 86.4 (d) 86.3 (d) 86.5 (d)
25 130.5 (s)   82.2 (s) 131.7 (s) 70.4 (s) 70.3 (s) 70.4 (s)
26 25.2 (q)   24.2 (q) 25.9 (q) 28.0 (q) 27.9 (q) 28.0 (q)
27 16.9 (q)   24.5 (q) 17.8 (q) 24.1 (q) 24.1 (q) 24.2 (q)
28 28.3 (q) 28.4 (q) 28.1 (q) 28.4 (q) 27.9 (q) 28.4 (q) 22.5 (q)
29 21.8 (q) 22.2 (q) 15.4 (q) 22.2 (q) 21.8 (q) 22.2 (q) 22.3 (q)
30 16.2 (q) 16.4 (q) 16.3 (q) 16.6 (q) 16.7 (q) 15.6 (q) 15.4 (q)
1'         171.1 (s)    
2'         21.5 (q)    
Table 2.
Cytotoxicity activity of compounds 1 – 7 against P-388 murine leukemia cells
Compounds IC50 (µM)
Dammar-24-en-3α-ol (1) 21.30 ± 0.06
3-epicabraleahydroxy lactone (2) 104.71 ± 0.05
(E)-25-hydroperoxydammar-23-en-3β,20-diol (3) 12.41 ± 0.04
Dammar-24-en-3β,20-diol (4) 50.44 ± 0.04
3α-acetyl-20S, 24S-epoxy-25-hydroxydammarane (5) 8.20 ± 0.06
3-epiocotillol (6) 23.94 ± 0.04
Cabraleone (7) 32.86 ± 0.04
Artonin E 0.68 ± 0.05

Positive control

TOOLS
Similar articles