Journal List > Nat Prod Sci > v.23(3) > 1060671

Seo, Park, Ko, Jeong, and Choi: Comparative Effects of Dietary Quercetin and Rutin in Rats Fed with the Lieber-DeCarli Ethanol Diet

Abstract

Flavonoids including quercetin and rutin are a group of naturally occurring compounds widely distributed in plants, especially in buckwheat. Thus, cereal and the leaf of the plant have increasingly used as a source of nutritional and functional foods such as noodle, cake or soup in Korea, Japan and other countries. This study investigated comparative effects of dietary rutin rich in buckwheat and its aglycone, quercetin, on serum biomarkers and antioxidant parameters in rats treated with chronic ethanol. Rats were fed with the liquid diets prepared by the method of Lieber Decarli. Serum alanine transaminase (ALT) and aspartate transaminase (AST) activities increased significantly by alcohol feeding. Dietary flavonoids including rutin, quercetin and their mixtures (1/1, v/v) decreased significantly the activities of serum ALT whereas the feeding of quercetin decreased only the activity of serum AST. The concentration of serum malondialdehydes elevated by chronic alcohol feeding decreased markedly in all the experimental groups that were fed with the flavonoids; however, the combined administration of quercetin or rutin, but not that of rutin or quercetin alone decreased significantly the concentration of liver malondialdehydes to the normal range in rats fed without ethanol. Our results suggested that dietary combined mixture of rutin and quercetin might be effective in ameliorating adverse responses seen in rats exposed to ethanol chronically.

References

(1). Nijveldt R. J.., van Nood E.., van Hoorn D. E.., Boelens P. G.., van Norren K.., van Leeuwen P. A.Am. J. Clin. Nutr. 2001. 74:418–425.
(2). Romano B.., Pagano E.., Montanaro V.., Fortunato A. L.., Milic N.., Borrelli F.Phytother. Res. 2013. 27:1588–1596.
(3). Boots A. W.., Haenen G. R.., Bast A.Eur. J. Pharmacol. 2008. 585:325–337.
(4). Kovalskii I. V.., Krasnyuk I. I.., krasnyuk Jr. I. I.., Nikulina O. I.., Belyatskaya A. V.., Kharitonov Yu. Ya.., Feldman N. B.., Lutsenko S. V.Pharmaceutical Chem. J. 2014. 48:73–76.
(5). Crespy V.., Morand C.., Besson C.., Monach C.., Demigne C.., Remesy C. J.Agric. Food Chem. 2002. 50:618–621.
(6). Scalbert A.., Morand C.., Monach C.., Rémésy C.Biomed. Pharmacother. 2002. 56:276–282.
(7). Carbonaro, M; Grant G.Ann. Nutr. Metab. 2005. 49:178–182.
(8). Nordmann R.., Ribière C.., Rouach H.Free Radic. Biol. Med. 1992. 12:219–240.
(9). Tang Y.., Gao C.., Xing M.., Li Y.., Zhu L.., Wang D.., Yang X.., Liu L.., Yao P.Food Chem. Toxicol. 2012. 50:1194–1200.
(10). Shenbagam M.., Nalini N.Fundam. Clin. Pharmacol. 2011. 25:493–502.
(11). Botros M.., Sikaris K.A.Clin. Biochem. Rev. 2013. 34:117–130.
(12). Lieber C. S.., DeCarli L. M.Alcohol Alcohol. 1989. 24:197–211.
(13). Carr T. P.., Andersen C. J.., Rudel L. L.Clin. Biochem. 1993. 26:39–42.
(14). Yagi K.Chem. Phys. Lipids. 1987. 45:337–351.
(15). Lowry O. H.., Rosebrough N. J.., Farr A. L.., Randall R. J. J.Biol. Chem. 1951. 193:265–275.
(16). Gramenzi A.., Caputo F.., Biselli M.., Kuria F.., Loggi E.., Andreone P.., Bernardi M.Aliment Pharmacol. Ther. 2006. 24:1151–1161.
(17). Kim M. K.., Hyun S. H.., Choung S. Y. J.Health Sci. 2006. 52:344–351.
(18). Baraona E.., Lieber C. S. J.Lipid Res. 1979. 20:289–315.
(19). Zeman F. J.In Clinical Nutrition and Dietetics (2/e): Liver disease and alcoholism; Jones, L Ed; Macmillan Publishing; U.S.A,. 1991. 517–553.
(20). Keshavarzian A.., Farhadi A.., Forsyth C. B.., Rangan J.., Jakate S.., Shaikh M.., Banan A.., Fields J. Z. J.Hepatol. 2009. 50:538–547.
(21). Nolan J. P.Hepatology. 2010. 52:1829–1835.
(22). Wang H. J.., Zakhari S.., Jung M. K.World J. Gastroenterol. 2010. 16:1304–1313.
(23). Kim, H; Kong H.., Choi B.., Yang Y.., Kim Y.., Lim M. J.., Neckers L.., Jung Y.Pharm. Res. 2005. 22:1499–1509.
(24). Vuppalanchi R.., Juluri R.., Bell L. N.., Ghabril M.., Kamendulis L.., Klaunig J. E.., Saxena R.., Agarwal D.., Johnson M. S.., Chalasani N.Am. J. Med. Sci. 2011. 342:314–317.

Fig. 1.
The activities of serum ALT in rats treated with ethanol. a,b Values in a bar without superscript letters denote significant difference (p < 0.05).
nps-23-222f1.tif
Fig. 2.
The activities of serum AST in rats treated with ethanol. a,b,c Values in a bar without superscript letters denote significant difference (p < 0.05).
nps-23-222f2.tif
Table 1.
Diet composition (g/L)
  Normal Experimental
Control Quercetin Rutin Q+R
Casein 41.4 41.4 41.4 41.4 41.4
L-Cystine 0.5 0.5 0.5 0.5 0.5
DL-Methionine 0.3 0.3 0.3 0.3 0.3
Corn oil 8 8 8 8 8
Olive oil 15 15 15 15 15
Dextrin-maltose 153 64 64 64 64
Fiber(cellulose) 10 10 10 10 10
Xanthan gum 3 3 3 3 3
Choline bitartrate 0.53 0.53 0.53 0.53 0.53
Vitamin mix1 2.55 2.55 2.55 2.55 2.55
Mineral mix2 9 9 9 9 9
Ethanol3 0 48 48 48 48
Rutin 0 0 9 0 4.5
Quercetin 0 0 0 5 2.5

1 AIN-76 vitamin mix,

2 AIN-76 Mineral mix,

3 Ethanol 95%.

Table 2.
Body weight and growth parameters
Parameters Normal Experimental
Control Quercetin Rutin Q+R
Initial body weight (g) 188 ± 5a 199 ± 4 a 187 ± 3 a 188 ± 3 a 188 ± 3 a
Weight gain (g) 244 ± 12 b 125 ± 9 a 133 ± 14a 136 ± 11a 132 ± 17 a
Food intake (ml/days) 110 ± 3 b 78.1 ± 1.7 a 85.2 ± 3.5 a 85.8 ± 2.7 a 87.4 ± 3.2 a
FER 0.054 ± 0.001 b 0.039 ± 0.002a 0.038 ± 0.003a 0.038 ± 0.002 a 0.036 ± 0.003 a
Relative liver weight (g/100g BW) 2.73 ± 0.08 a 2.92 ± 0.05 ab 3.0 ± 0.1 bc 3.24 ± 0.06 c 3.16 ± 0.10 c

Mean ± S.E. of 6 rats.

a,b,c Values in a same line without superscript letters denote significant difference (p<0.05).

FER: feed efficiency ratio.

Table 3.
The concentration of serum lipids
  Normal Experimental
Control Quercetin Rutin Q+R
TC (mg/dL) 52.2 ± 2.6a 69.5 ± 4.8b 63.0 ± 3.8b 50.8 ± 1.9a 64.3 ± 3.5b
HDL-C (mg/dL) 33.2 ± 1.3ab 39.6 ± 3.3b 32.3 ± 2.1ab 27.8 ± 2.1 a 28.5 ± 1.8a
HDL-C/TC (%) 63.9 ± 2.5c 55.5 ± 2.5b 54.7 ± 3.4b 51.3 ± 0.9ab 45.0 ± 3.6a
TG (mg/dL) 100 ± 20 a 76.9 ± 10.1 a 84.7 ± 8.1 a 79.8 ± 6.9 a 73.3 ± 6.0 a
NEFA (mEq/L) 1188 ± 45 a 1265 ± 127 a 1072 ± 171 a 1192 ± 124 a 894 ± 146 a

Mean ± S.E. of 6 rats.

a,b,c Values in a same line without superscript letters denote significant difference (p < 0.05).

TC: total cholesterol, HDL-C: high density lipoprotein-cholesterol, TG: triacylglycerol, NEFA: non-esterified fatty acid.

Table 4.
The concentration of hepatic lipids
  Normal Experimental
Control Quercetin Rutin Q+R
Cholesterol (mg/g) 55.7 ± 0.5a 11.0 ± 1.9b 59.0 ± 1.3ab 59.1 ± 1.5ab 59.7 ± 2.2ab
Triacylglycerol (mg/g) 60.4 ± 7.2a 66.8 ± 8.1a 57.7 ± 10.8a 54.6 ± 10.3a 52.1 ± 10.9a

Mean ± S.E. of 6 rats.

a,b Values in a same line without superscript letters denote significant difference (p < 0.05).

Table 5.
The concentration of liver and serum malondialdehydes (MDA).
  Normal Experimental
Control Quercetin Rutin Q+R
Serum (nmol/ml) 15.7 ± 7.8ab 33.0 ± 7.7b 12.5 ± 4.3a 13.7 ± 5.7a 16.7 ± 4.3ab
Liver (nmol/ mg protein) 58.3 ± 0.4ab 11.9 ± 1.3abc 13.7 ± 3.0bc 14.4 ± 2.9c 57.6 ± 0.9a

Mean ± S.E. of 6 rats.

a,b,c Values in a same line without superscript letters denote significant difference (p < 0.05).

TOOLS
Similar articles