Abstract
Cordyceps bassiana has long been used as an oriental medicine and reported to possess diverse biological activities. The fruiting bodies of Cordyceps bassiana was extracted with ethanol and then further fractionated with n-hexane, ethyl acetate, n-butanol and water. The butanol fraction from Cordyceps bassiana (CBBF) exhibited the most effective in anti-inflammatory activity in RAW 264.7 macrophages and the roles of CBBF on the anti-inflammation cascade in LPS-stimulated RAW 264.7 cells were studied. To investigate the mechanism by which CBBF inhibits NO, iNOS and COX-2, the activation of IκB and MAPKs in LPS-activated macrophage were examined. Our present results demonstrated that CBBF inhibits NO production and iNOS expression in LPS-stimulated RAW 264.7 macrophage cells, and these effects were mediated through the inhibition of IκB-α, JNK and p38 phosphorylation. Also, CBBF suppressed activation of MAPKs including p38 and SAPK/JNK. Furthermore, CBBF significantly suppressed LPS-induced intracellular ROS generation. Its inhibition on iNOS expression, together with its antioxidant activity, may support its anti-inflammatory activity. Thus Cordyceps bassiana can be used as a useful medicinal food or drug for further studies.
References
(1). Zhou X.., Gong Z.., Su Y.., Lin J.., Tang K. J.Pharm. Pharmacol. 2009. 61:279–291.
(2). Sung G. H.., Hywel-Jones N. L.., Sung J. M.., Luangsa-Ard J. J.., Shrestha B.., Spatafora J. W.Stud. Mycol. 2007. 57:5–59.
(3). Priest F. G.., Goodfellow M.Applied Microbial Systematics (9eds.); Kluwer Academic Publishers: Dordrecht. P,. 2000. 203–230.
(4). Schaeffenberg B. Z.Pflanzenkrankh. Pflanzensch. 1955. 62:544–549.
(5). Li Z.., Li C.., Huang B.., Fan M.Chinese Science Bulletin. 2001. 46:751–753.
(6). Kim K. M.., Kwon Y. G.., Chung H. T.., Yun Y. G.., Pae H. O.., Han J. A.., Ha K. S.., Kim T. W.., Kim Y. M.Toxicol. Appl. Pharmacol. 2003. 190:1–8.
(7). Park Y. M.., Won J. H.., Kim Y. H.., Choi J. W.., Park H. J.., Lee K. T. J.Ethnopharmacol. 2005. 101:120–128.
(8). Kim B. C.., Choi J. W.., Hong H. Y.., Lee S. A.., Hong S.., Park E. H.., Kim S. J.., Lim C. J. J.Ethnopharmacol. 2006. 106:364–371.
(9). Paterson R. R.Phytochemistry. 2008. 69:1469–1495.
(10). Wadsworth T. L.., Koop D. R.Biochem. Pharmacol. 1999. 57:941–949.
(12). D'Acquisto F.., May M. J.., Ghosh S.Mol. Interv. 2002. 2:22–35.
(13). Moynagh P. N. J.Cell Sci. 2005. 118:4589–4592.
(14). Giri S.., Rattan R.., Singh A. K.., Singh I. J.Immunol. 2004. 173:5196–5208.
(15). Islam S.., Hassan F.., Mu M. M.., Ito H.., Koide N.., Mori I.., Yoshida T.., Yokochi T.Microbiol. Immunol. 2004. 48:729–736.
(16). Chan E. D.., Riches D. W.Am. J. Physiol. Cell Physiol. 2001. 280:C441–C450.
(17). Hommes D. W.., Peppelenbosch M. P.., van Deventer S. J.Gut. 2003. 52:144–151.
(18). Kim S. H.., Johnson V. J.., Shin T. Y.., Sharma R. P.Exp. Biol. Med(Maywood). 2004. 229:203–213.
(19). Bai S. K.., Lee S. J.., Na H. J.., Ha K. S.., Han J. A.., Lee H.., Kwon Y. G.., Chung C. K.., Kim Y. M.Exp. Mol. Med. 2005. 37:323–334.
(20). Kim J. H.., Kim D. H.., Baek S. H.., Lee H. J.., Kim M. R.., Kwon H. J.., Lee C. H.Biochem. Pharmacol. 2006. 71:1198–1205.
(21). Torres M.., Forman H. J.Biofactors. 2003. 17:287–296.
(22). Suh S. J.., Chung T. W.., Son M. J.., Kim S. H.., Moon T. C.., Son K. H.., Kim H. P.., Chang H. W.., Kim C. H.Arch. Biochem. Biophys. 2006. 447:136–146.
(23). Suh W.., Nam G.., Yang W. S.., Sung G. H.., Shim S. H.., Cho J. Y.Biomol. Ther. 2017. 25:165–170.