Journal List > Nat Prod Sci > v.23(3) > 1060658

Talip, Azziz, Wong, Awang, Naz, Bakri, Ahmad, and Litaudon: New Azafluorenone Derivative and Antibacterial Activities of Alphonsea cylindrica Barks

Abstract

A phytochemical study of Alphonsea cylindrica King (unreported) has led to the isolation of six alkaloids. The compounds were identified as kinabaline (1; azafluorenone alkaloid), muniranine (2), O-methylmoschatoline (3; oxoaporphine alkaloid), lysicamine (4), atherospermidine (5) and N-methylouregidione (6; 4, 5-dioxoaporphine alkaloid). The structures of the isolated compounds were determined based on the spectroscopic techniques and by comparison with data reported in the literature. Alkaloid 2 was isolated as a new derivative of azafluorenone while alkaloids 1, 3 – 6 were isolated for the first time from Alphonsea species. In addition, alkaloid 3 and 4 showed inhibition zone against Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus cereus in disc diffusion test. The minimum inhibition concentration (MIC) values of lysicamine (4) against S. aureus, B. cereus and P. aeruginosa were found to be smaller than O-methylmoschatoline (3). Therefore, the reported antibacterial activity showed the potential of this plant as natural antibacterial agent and supported the documented traditional use of Alphonsea sp. in the treatment of diarrhea and fever.

References

(1). Srivastava G.., Mehrotra R. C.PLoS ONE. 2013. 8:1–6.
(2). Turner I. M.Gard. Bull. Singapore. 2009. 61:185–188.
(3). Latiff A.Malay. Nat. J. 2013. 65:247–273.
(4). Turner, I. M; Utteridge T. M. A.Blumea. 2015. 59:206–208.
(5). Turner I. M.Gard. Bull. Singapore. 2016. 68:65–69.
(6). IUCN Red List of Threatened Species. 2010.
(7). Batugal P. A.., Jayashree K.., Lee S. Y.., Jeffrey T. O.Medicinal Plants Research in Asia, Volume 1: The Framework and Project Work plans. International Plant Genetic Resources Institute –Regional Office for Asia; the Pacific and Oceania (IPGRI-APO), Malaysia,. 2004. 3–6.
(8). Jalil J.., Teh C. H.., Hussain K.., Jamal J. A.., Mohamad H. F.., Muhammad K.Abstract of International Conference on Natural Products. 2015. 154.
(9). Thang T. D.., Huong L. T.., Dai D. N.., Oguwande I. A.Nat. Prod. Res. 2013. 27:2022–2026.
(10). Johnson T. A.., Sohn J.., Ward A. E.., Cohen T. L.., Lorig-Roach N. D.., Chen H.., Pilli R. A.., Widjaja E. A.., Hanafi M.., Kardono L. B. S.., Lotulung P. D.., Boundy-Mills K.., Bjeldanes L. F.Bioorg. Med. Chem. 2013. 21:4358–4364.
(11). Xie N.., Xu R.., Zhong S.., Zhao S.Journal-china Pharmaceutical University,. 1994. 25:205.
(12). Bently K. W.Nat. Prod. Rep. 2001. 18:148–170.
crossref
(13). Xie N.., Zhong S.., Zhao S.., Peter G. W. J.China Pharm. Uni. 1989. 20:321–324.
(14). Yang N.., Xie N.., Zhi F. J.China Pharm. Uni. 1999. 30:171–173.
(15). Yang N. Y.., Xie N.., Kong L. Y.., Li G.Chin. Chem. Lett. 2000. 11:409.
(16). Ning X.., Yang N. Y.Chin. Chem. Lett. 1999. 10:671–672.
(17). Mahanta P. K.., Mathur R. K.., Gopinath K. W.Indian J. Chem. 1975. 13:306–308.
(18). Tadi D.., Wanningama G. P.., Cassels B. K.., Cavé A. J.Nat. cí Prod. 1987. 50:518–519.
(19). Gopinath K. W.., Mahanta P. K.., Bohlmann F.., Zedro C.Tetrahedron. 1976. 32:737–740.
(20). Narendra P. D.Res. J. Pharmacol. Pharmacodyn. 2009. 1:66–69.
(21). Horgen F. D.., Edrada R. A.., de los Reyes G.., Agcaoili F.., Madulid D. A.., Wongpanich V.., Angerhofer C. K.., Pezzuto J. M.., Soejarto D. D.., Farnsworth N. R.Phytomedicine. 2001. 8:71–81.
(22). Indrani V.., Madhuri T.., Lakshmi K. B.., Suvarnalatha D. P.Int. J. Sci. Res. Management. 2015. 3:2103–2105.
(23). Norhayati I.., Getha K.., Haffiz J. M.., Ilham A. M.., Sahira H. L.., Siti Syarifah M. M.., Syamil M. A. J.Trop. For. Sci. 2013. 25:52–59.
(24). Hanum F. I.., Ibrahim A. Z.., Khamis S.., Nazre M.., Lepun P.., Rusea G.., Lajuni J. J.., Latiff A. Pertanika J.Trop. Agric. Sci. 2001. 24:63–78.
(25). Sati S. C.., Khulbe K.., Joshi S.Res. J. Microbiol. 2011. 6:289–296.
(26). European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Clin. Microbiol. Infect. 2000. 9:1–7.
(27). Yusof H.., Din L. B.., Yaacob W. A.., Ibrahim N.., Yamin B. M.., Latiff A.Sains Malaysiana. 2015. 44:1125–1128.
(28). Husain K.., Jamal J. A.., Jalil J.Int. J. Pharm. Pharm. Sci. 2012. 4:465–467.
(29). Costa E. V.., Marques F. D. A.., Pinheiro M. L. B.., Braga R. M.., Delarmelina C.., Duarte M. C. T.., Ruiz A. L. T. G.., V; de Carvalho J. E.., Maia B. H. J.Braz. Chem. Soc. 2011. 22:1111–1117.
(30). Wirasathien L.., Boonarkart C.., Pengsuparp T.., Suttisri R.Pharm. Biol. 2006. 44:274–278.
(31). Tadi D.., Cassels B. K.., Leboeuf M.., Cavé A.Phytochemistry cí. 1987. 26:537–541.
(32). Yoshida N. C.., de Siqueira J. M.., Rodrigues R. P.., Correia R. P.., Garcez W. S. J.Braz. Chem. Soc. 2013. 24:529–533.
(33). Tadi D.., Cassels B. K.., Cavé A.Heterocycles. 1988. 27:407–c. í 421.
(34). Tan K. K.., Khoo T. J.., Rajagopal M.., Wiart C.Nat. Prod. Res. 2015. 29:2346–2349.
(35). Omar H.., Hashim N. M.., Zajmi A.., Nordin N.., Abdelwahab S. I.., Azizan A. H.., Hadi, A. H; Ali H. M.Molecules. 2013. 18:8994–9009.
(36). Tavares Lde C.., Zanon G.., Weber A. D.., Neto A. T.., Mostardeiro C. P.., Da Cruz I. B.., Oliveira R. M.., Ilha V.., Dalcol I. I.., Morel A. F.PLoS One. 2014. 9:, e97000.

Fig. 1.
(a) Herbarium of A. cylindrica; (b) Fruits of A. cylindrica.
nps-23-151f1.tif
Fig. 2.
Structures of alkaloids 1 – 6.
nps-23-151f2.tif
Fig. 3.
HMBC, COSY and NOESY correlations of 2.
nps-23-151f3.tif
Table 1.
NMR spectroscopic data for alkaloids 1 and 2 in CDCl3 (500 MHz 1H and 125 MHz 13C)
Position Muniranine (2)
δ13C δ1H HMQC HMBC COSY δ13C δH HMQC HMBC COSY
1 146.9         147.2        
2 125.2 6.94 (d, J =5.0Hz, 1H) H-2 CH3-1, C3, C-9a H-3 124.7 6.89 (d, J = 5.0 Hz, 1H) H-2 CH3-1, C3, C9a H-3
3 152.8 8.50 (d, J =5.0Hz, 1H) H-3 C1, C2, C4a H-2 153.0 8.45 (d, J = 5.0 Hz, 1H) H-3 C1, C2, C4a H-2
4a 163.4       164.0      
4b 111.0       113.8      
5 162.5       154.7      
6 155.8       148.8      
7 101.8 6.32 (s, 1H) H-7 C4b, C8a, C8, C6, C5   143.8      
8 140.0       144.0      
8a 131.7       127.9      
9 194.0       194.8      
9a 127.7       127.0        
OCH3-5 56.7 3.91 (s, 3H)   C5   61.8 4.01 (s, 3H)   C5  
OCH3-7     61.5 3.98 (s, 3H)   C7, C8  
OCH3-8 62.0 3.99 (s, 3H)   C8   62.2 4.04 (s, 3H)      
CH3-1 17.3 2.61 (s, 3H)   C1, C2, C9a   17.4 2.59 (s, 3H)   C1, C2, C9a  
OH-6 8.81 (br s, 1H)   C6, C4b, C7   8.71 (br s, 1H)   C4b, C5, C6, C7, C8  
Table 2.
Diameter zone of inhibition for alkaloids 1 – 6 against S. aureus, B. cereus, S.typhi, E. coli and P. aeruginosa
Alkaloids Inhibition zone (mm) ± SE
S. aureus B. cereus S. typhi E. coli P. aeruginosa
1
2
3 8.33 ± 0.58 9.33 ± 0.58 9.67 ± 0.58
4 11.33 ± 0.58 10.00 ± 1.00 13.33 ± 1.53
5
6
Table 3.
MIC of alkaloids 3 and 4 against S. aureus, B. cereus and P. aeruginosa
Alkaloids MIC value (μg/ml)
S. aureus B. cereus P. aeruginosa
3 800 800 500
4 125 250 125
TOOLS
Similar articles