Journal List > Nat Prod Sci > v.23(2) > 1060653

Nguyen, Nguyen, Lee, Jun, Min, and Kim: Neolignan Derivatives from the Flower of Magnolia biondii Pamp. and their Effects on IL-2 expression in T-cells

Abstract

The isolation of the MeOH extract from the flower bud of Magnolia biondii Pamp. using various column chromatographies and HPLC led to eleven neoglignan derivatives (1 – 11). Their structures were mainly determined by 1D and 2D NMR spectral data analysis and physiological methods. The isolated compounds (1 – 11) were tested for anti-allergic effects using IL-2 inhibitory assay in Jurkat T cells.

References

(1). Park C. S.., Kim T. B.., Lee J. Y.., Park J. Y.., Lee Y. C.., Jeong S. S.., Lee Y. D.., Cho Y. S.., Moon H. B.Korean J. Intern. Med. 2012. 27:84–90.
(2). Song Q.., Fischer N. H.Rev. Soc. Quím. Mex. 1999. 43:211–218.
(3). Marin G. H.., Mansilla E.., Ciocchini S.., Quiroga N.., Cardozo N.., Weiss M.., Gustavo H. M.., Trebucq H.Annalen der Chemischen Forschung. 2013. 1:50–55.
(4). Lee S.., Chappell J.Plant Physiol. 2008. 147:1017–1033.
(5). Haraguchi H.., Ishikawa H.., Shirataki N.., Fukuda A. J.Pharm. Pharmacol. 1997. 49:209–212.
(6). Syu W. J.., Shen C. C.., Lu J. J.., Lee G. H.., Sun C. M.Chem. Biodivers. 2004. 1:530–537.
(7). Kuo W. L.., Chung C. Y.., Hwang T. L.., Chen J. J.Phytochemistry. 2013. 85:153–160.
(8). Akber U.., Na B. R.., Ko Y. S.., Lee H. S.., Kim H. R.., Kwon M. S.., Park Z. Y.., Choi E. J.., Han W. C.., Lee S. H.., Oh H. M.., Jun C. D.Int. Immunopharmacol. 2015. 25:130–140.
(9). Hershko A. Y.., Suzuki R.., Charles N.., Alvarez-Errico D.., Sargent J. L.., Laurence A.., Rivera J.Immunity. 2011. 35:562–571.
(10). Chen C. C.., Huang Y. L.., Chen Y. P.., Hsu H. Y.., Kuo Y. H.Chem. Pharm. Bull. 1988. 36:1791–1795.
(11). Tyagi O. D.., Jensen S.., Boll P. M.., Sharma N. K.., Bisht K. S.., Parmar V. S.Phytochemistry. 1993. 32:445–448.
(12). Ponpipom M. M.., Bugianesi R. L.., Brooker D. R.., Yue B. Z.., Hwang S. B.., Shen T. Y. J.Med. Chem. 1987. 30:136–142.
(13). Wenkert E.., Gottlieb H. E.., Gottlieb O. R.., Pereira M. O. S.., Formiga M. D.Phytochemistry. 1976. 15:1547–1551.
(14). Jensen S.., Olsen C. E.., Tyagi O. D.., Boll P. M.., Hussaini F. A.., Gupta S.., Bisht K. S.., Parmar V. S.Phytochemistry. 1994. 36:789–792.
(15). Tyagi O. D.., Wengel J.., Prasad A. K.., Boll P. M.., Olsen C. E.., Pati H. N.., Bisht K. S.., Parmar V. S.Acta Chem. Scand. 1994. 48:1007–1011.
(16). El-Feraly F. S.., Cheatham S. F.., Hufford C. D.., Li W. S.Phytochemistry. 1982. 21:1133–1135.
(17). Pieters L.., de Bruyne T.., Claeys M.., Vlietinck A.., Calomme M.., vanden Berghe D. J.Nat. Prod. 1993. 56:899–906.
(18). Kuroyanagi M.., Yoshida K.., Yamamoto A.., Miwa M.Chem. Pharm. Bull. 2000. 48:832–837.
(19). Du J.., Wang M. L.., Chen R. Y.., Yu D. Q. J.Asian Nat. Prod. Res. 2001. 3:313–319.
(20). Kasperska-Zajac A.., Brzoza Z.., Rogala B.Recent Pat. Inflamm. Allergy Drug Discov. 2008. 2:72–76.
(21). Noshita T.., Funayama S.., Hirakawa T.., Kidachi Y.., Ryoyama K.Biosci. Biotechnol. Biochem. 2008. 72:2775–2778.
(22). Reddy S. D.., Siva B.., Poornima B.., Kumar D. A.., Tiwari A. K.., Ramesh U.., Babu K. S.Pharmacogn. Mag. 2015. 11:235–241.

Fig. 1.
Chemical structures of neolignans 1 – 11 isolated from the flower of Magnolia biondii Pamp.
nps-23-119f1.tif
Fig. 2.
Inhibition of IL-2 expression and cell viability by neolignans 1–11 isolated from M. biondii. A) Jurkat T cells (1 × 106) were treated with 50 µM concentrations of 1 – 11 for 30 min and stimulated with PMA (100 nM)/A23187 (1 µM) for 6 h. After incubation, cells were harvested and total RNA was isolated from harvested cells. Human IL-2 mRNA levels were detected by conventional PCR. B) Jurkat T cells (3×105) were seeded in a 24 well-plate and incubated with 50 µM concentrations of 1–11 for 24 h. After incubation, cell viability was examined by MTT assay. Data was shown as percentages compared to cell viability treated with Mock control.
nps-23-119f2.tif
Table 1.
1H NMR spectroscopic data for compounds 1 – 7 (δ values)a
Position 1b 2b 3c 4c 5c 6c 7c
2 6.81, s   6.82, d (1.5)     6.78, m 6.92, m
5 6.77, brs 6.70, m 6.78, d (8.0) 6.96, m 6.85, m 6.84, d (8.4) 6.87, d (7.9)
6   6.75, dd (8.0, 1.5)     6.78, m 6.92, m
7 4.70, d (10.3) 4.24, d (3.6) 4.09, d (10.9) 5.41, d (10.1) 5.42, d (10.0) 6.14, d (5.1) 4.68, dd (17.0, 2.0)
8 2.22, dd (10.3, 6.7) 2.69, m 2.73, m 2.30, dq (9.5, 6.8) 2.30, m 2.83, dd (7.3, 5.1) 2.82, q (7.2)
9 1.07, d (6.7) 1.06, d (7.0) 0.97, d (7.0) 1.15, d (6.8) 1.17, d (6.9) 0.50, d (7.3) 1.21, d (7.2)
1' 2.74, m 2.09, m          
2' 4.43, d (8.8) 4.25, s   6.42, s 5.80, s 5.84, s 5.81, s
5'   5.56, s   5.71, s 5.67, s 5.77, s 5.76, s
          2.46, dd 2.68, dd 2.23, dd
7' 2.57, m, 2.74, m 2.37, m, 2.86, m 3.12, ddd (6.7, 2.5, 1.2) 3.11, dd (6.8, 1.2), 3.16, dd (6.8, 1.2) (13.6, 7.3), 2.68, dd (13.5, 7.0), 2.77, dd (13.4, 6.8), 2.35, dd
          (13.6, 7.3) (13.5, 7.8) (13.4, 8.0)
8' 5.90, m 5.92, m 6.54, d (1.2) 5.92, ddt (16.9, 10.1, 6.9) 5.53, ddt (17.3, 10.1, 7.3) 5.72, m 5.54, dddd (17.0, 10.2, 7.9, 6.8)
9' 5.10, dd (9.9, 1.5), 5.17, dd (17.3, 1.5) 5.05, m, 5.15, dd (17.1, 1.5) 5.14, m 5.13, m 5.04, ddd (18.8, 13.6, 1.9) 5.14, t (12.2) 5.00, dd (10.2, 2.0), 5.47, d (0.96)
–OCH2O- – 5.95, s 5.92, m 5.95, s   5.97, s 5.96, s 5.99, s
3-OCH3       3.82, s      
4-OCH3
3'-OCH3 3.21, s 3.32, s 3.19, s 3.14, s 3.69, s 3.67, s 3.67, s
4'-OCH3 3.76, s 3.73, s 3.41, s        

a δ value recorded in ppm (J in Hz).

b 1H NMR measured at 500 MHz in CDCl3.

c 1H NMR measured at 500 MHz in CD3OD.

Table 2.
1H NMR spectroscopic data for compounds 8 – 11 (δ values)a
Position 8 9 10 11
2 6.98, d (2.0) 6.95, s 6.58, d (2.0) 6.39, s
5 6.84, d (8.2) 6.82, d (8.7) 6.79, d (8.2)  
6 6.96, dd (8.2, 2.0) 6.95, s 6.66, dd (8.2, 2.1) 6.39, s
7 8 5.12, d (9.5) 3.46, m 5.55, d (7.4) 3.60, dd (12.2, 5.8) 2.46, m 2.57, d (6.1) 2.07, m
9 1.38, d (6.8) 3.90, d (4.6), 3.96, dd (10.9, 5.8) 1.07, d (6.1) 0.62, d (6.5)
2' 6.79, s 6.67, d (2.2)    
3'     3.52, m 5.80, s
6' 6.77, s 6.67, d (2.2) 7.04, s 5.49, s
7' 6.36, dd (15.7, 1.6) 2.65, d (7.9) 3.12, dd (16.4, 8.6) 2.22, d (11.3), 2.39, ddd (11.3, 6.4, 1.4)
8' 6.11, dq (15.7, 6.6) 1.88, m 5.86, ddt (17.6, 10.9, 6.8) 5.05, m
9' 1.87, dd (6.6, 1.6) 3.68, d (6.3) 5.17, d (6.3), 5.20, s 1.76, dd (12.0, 11.9), 2.32, m
3-OCH3 3.89, s 3.86, s 3.86, s 3.85, s
4-OCH3 3.85, s 3.82, s
5-OCH3       3.85, s
3'-OCH3 3.89, s 3.88, s    
5'-OCH3     3.64, s 3.68, s

a δ value recorded in ppm (J in Hz) and

1 H NMR measured at 500 MHz in CDCl3.

Table 3.
13C NMR spectroscopic data for compounds 1 – 11 (δ values)a
Position 1b 2b 3c 4c 5c 6c 7c 8b 9b 10b 11b
1 134.4 134.2 135.5 131.3 133.1 133.2 136.4 132.8 133.9 134.0 139.1
2 106.9 106.7 108.8 111.2 107.8 107.3 106.0 109.7 109.5 110.2 104.8
3 148.0 147.9 149.5 151.3 149.8 149.4 149.7 149.3 149.3 148.6 153.4
4 147.6 147.5 149.1 150.8 149.6 148.8 148.6 146.8 149.1 149.6 137.0
5 108.2 108.1 108.1 112.8 109.1 109.2 109.3 110.0 111.1 111.7 153.4
6 120.5 120.1 122.2 121.2 120.2 120.4 120.3 119.4 118.8 119.5 104.8
7 87.2 86.1 86.8 93.3 92.8 89.3 94.9 93.8 87.9 49.0 45.4
8 51.4 48.5 50.6 51.5 37.1 44.2 46.4 45.8 53.9 45.5 37.9
9 8.9 11.2 9.4 6.9 8.3 12.4 18.8 17.8 64.1 13.8 14.6
1' 52.8 54.1 144.5 143.9 53.2 55.8 55.0 132.4 135.5 140.6 50.4
2' 80.0 81.1 140.2 133.6 111.1 112.3 112.1 109.4 112.6 194.5 180.0
3' 84.7 82.3 83.3 79.3 154.3 153.8 153.7 144.3 144.3 70.0 101.5
4' 172.4 173.4 103.4 177.4 185.7 185.5 185.4 149.3 146.7 202.4 183.1
5' 105.7 103.5 44.2 102.9 102.8 102.6 102.7 133.4 127.9 89.5 153.4
6' 196.4 196.9 196.1 189.2 185.3 185.1 185.3 113.5 116.1 147.3 108.9
7' 31.3 29.2 34.5 34.6 50.9 46.5 46.7 131.1 32.1 32.9 60.9
8' 135.4 136.4 136.4 136.6 132.6 132.2 132.9 123.7 34.7 133.9 81.9
9' 117.9 117.0 117.6 117.5 122.1 120.2 118.4 18.5 62.4 118.3 43.7
–OCH2O- 101.2 101.2 102.5 101.9 102.2 102.7
3-OCH3 56.5 56.1 56.2 56.1 56.2
4-OCH3 56.5 56.1 56.2 56.1 60.9
5-OCH3 56.2
3'-OCH3 51.5 53.4 47.7 51.6 55.8 56.2 55.8 56.8 56.1
4'-OCH3 56.4 56.1 51.4
5'-OCH3 54.1 55.3

a δ value recorded in ppm.

b 13C NMR measured at 125 MHz in CDCl3.

c 13C NMR measured at 125 MHz in CD3OD.

TOOLS
Similar articles