Abstract
Cyanidin-3β-D-glycoside (C3G), which is widely distributed in herbal medicines and functional foods, exhibits anti-inflammatory, anti-oxidant, and anti-scratching behavioral effects. Orally administered C3G is metabolized to protocatechuic acid (PA) by gut microbiota. Therefore, we compared the anti-colitic effect of C3G to that of PA in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. Orally administered C3G and PA preventively and curatively ameliorated TNBS-induced colitis parameters, including macroscopic colitis score, colon shortening, and increase of myeloperoxidase activity. Treatment with C3G or PA also inhibited the expression of cyclooxygenase-2, inducible NO synthatase, IL-1β, IL-6, and TNF-α and the activation of NF-κB in the colon of mice with TNBS-induced colitis. Furthermore, these also inhibited lipopolysaccharide-induced NF-κB activation and TNF-α expression in peritoneal macrophages. The anti-colitic effect of PA was more effective than C3G. Orally administered PA more potently attenuate colitis than C3G by inhibiting NF-κB activation and the anti-colitic efficacy of C3G may be dependent on the biotransformation of C3G to PA by gut microbiota.
References
(2). Han S. J.., Ryu S. N.., Trinh H. T.., Joh E. H.., Jang S. Y.., Han M. J.., Kim D. H. J.Food Sci. 2009. 74:H253–H258.
(3). de Ferrars R. M.., Czank C.., Zhang Q.., Botting N. P.., Kroon P. A.., Cassidy A.., Kay C. D.Br. J. Pharmacol. 2014. 171:3268–3282.
(4). Joseph S. V.., Edirisinghe I.., Burton-Freeman B. M. J.Agric. Food Chem. 2014. 62:3886–3903.
(5). Yang J.., Xiao Y. Y.Crit. Rev. Food Sci. Nutr. 2013. 53:1202–1225.
(6). Tsuda T.., Horio F.., Osawa T.Biofactors. 2000. 13:133–139.
(7). Min S.W.., Ryu S. N.., Kim D. H.Int. Immunopharmacol. 2010. 10:959–966.
(8). Vitaglione P.., Donnarumma G.., Napolitano A.., Galvano F.., Gallo A.., Scalfi L.., Fogliano V. J.Nutr. 2007. 137:2043–2048.
(9). Faria A.., Fernandes I.., Norberto S.., Mateus N.., Calhau C. J.Agric. Food Chem. 2014. 62:6898–6902.
(10). di Gesso J. L.., Kerr J. S.., Zhang Q.., Raheem S.., Yalamanchili S. K.., O'Hagan D.., Kay C. D.., O'Connell M. A.Mol. Nutr. Food Res. 2015. 59:1143–1154.
(11). Lee S. Y.., Jeong J. J.., Eun S. H.., Kim D. H.Eur. J. Pharmacol. 2015. 762:333–343.
(12). Ebert E. C.., Hagspiel K. D.Dig. Dis. Sci. 2011. 56:295–302.
(13). Wallace K. L.., Zheng L. B.., Kanazawa Y.., Shih D. Q.World J. Gastroenterol. 2014. 20:6–21.
(14). Laveti D.., Kumar M.., Hemalatha R.., Sistla R.., Naidu V. G.., Talla V.., Verma V.., Kaur N.., Nagpal R.Inflamm. Allergy Drug Targets. 2013. 12:349–361.
(15). Fairweather D.., Rose N. R.Lupus. 2005. 14:646–651.
(16). Dauphinee S. M.., Karsan A.Lab. Invest. 2006. 86:9–22.
(17). Perkins N. D.., Gilmore T. D.Cell Death Differ. 2006. 13:759–772.
(18). Tsuda T.., Horio F.., Osawa T. J.Nutr. Sci. Vitaminol. 2002. 48:305–310.
(19). Zhang Y.., Lian F.., Zhu Y.., Xia M.., Wang Q.., Ling W.., Wang X. D.Inflamm. Res. 2010. 59:723–730.
(20). Masella R.., Santangelo C.., D'Archivio M.., Li Volti G.., Giovannini C.., Galvano F.Curr. Med. Chem. 2012. 19:2901–2917.