Journal List > Nat Prod Sci > v.22(4) > 1060631

Kim, Ahn, Kim, Jo, Liu, Hwang, and Lee: Effect of Extraction Conditions of Green Tea on Antioxidant Activity and EGCG Content: Optimization using Response Surface Methodology

Abstract

Green tea, the leaves of Camellia sinsneis (Theaceae), is generally acknowledged as the most consumed beverage with multiple pharmacological functions including antioxidant activity. This study was performed to analyze the effect of extraction conditions of green tea on its antioxidant effects using DPPH assay. Three extraction factors such as extraction solvent (EtOH, 0 – 100%), extraction time (3 – 15 min) and extraction temperature (10 – 70oC) were analyzed and optimized extraction condition for antioxidant activity of green tea extract (GTE) was determined using response surface methodology with three-level-three-factor Box-Behnken design (BBD). Regression analysis showed a good fit of data and the optimal conditions of extraction were found to be 57.7% EtOH, 15 min and 70oC. Under this condition, antioxidant activity of experimental data was 88.4% which was almost fit to the ideal value of 88.6%. As epigallocatechin gallate (EGCG) is known for the major ingredient for antioxidant activity of green tea, we investigated the effect of EGCG on antioxidant activity of GTE. EGCG showed antioxidant activity with the IC50 value of 4.2 µg/ml and a positive correlation was observed between EGCG content and the antioxidant activity of GTE with R² = 0.7134. Interestingly, however, GTE with 50 – 70% antioxidant activity contain less than 1.0 µg/ml of EGCG, which is much lower than IC50 value of EGCG. Therefore, we suppose that EGCG together with other constituents contribute to antioxidant activity of GTE. Taken together, these results suggest that green tea is more beneficial than EGCG alone for antioxidant ability and optimal extraction condition of green tea will be useful for the development of food and pharmaceutical applications

References

(1). Zhang L.., Pang E.., Loo R. R.., Rao J.., Go V. L.., Loo J. A.., Lu Q. Y.Proteomics. 2011. 11:4638–4647.
(2). Bornhoeft J.., Castaneda D.., Nemoseck T.., Wang P.., Henning S. M.., Hong M. Y. J.Med. Food. 2012. 15:726–732.
(3). Rickman C.., Lyer A.., Chan V.., Brown L.Cur. Pharm. Biotechnol. 2010. 11:881–886.
(4). Ramadan G.., El-Beih N. M.., Abd El-Ghffar E. A.Br. J. Nutr. 2009. 102:1611–1619.
(5). Du G. J.., Zhang Z.., Wen X.D.., Yu C.., Calway T.., Yuan C. S.., Wang C. Z.Nutrients. 2012. 4:1679–1691.
(6). Zhong Y.., Chiou Y. S.., Pan M. H.., Shahidi F.Food Chem. 2012. 134:742–748.
(7). Steinmann J.., Buer J.., Pietschmann T.., Steinmann E.Br. J. Pharmacol. 2013. 168:1059–1073.
(8). Betteridge D. J.Metabolism. 2000. 49:3–8.
(9). Yoshikawa T.., Naito Y. J.Japan Med. Ass. 2002. 45:271–276.
(10). Gostner J. M.., Becker K.., Ueberall F.., Fuchs D.Food Chem. Toxicol. 2015. 80:72–79.
(11). García-Niño W. R.., Zazueta C.Pharmacol. Res. 2015. 97:84–103.
(12). de Oliveira C. C.., de Araújo C. V. M.., Ares G.., Granato D.Crit. Rev. Food Sci. Nutr. 2015. 55:1456–1473.
(13). Legeay S.., Rodier M.., Fillon L.., Faure S.., Clere N.Nutrients. 2015. 7:5443–5468.
(14). Tsai C. F.., Hsu Y. W.., Ting H. C.., Huang C. F.., Yen C. C.Food Chem. 2013. 136:1337–1344.
(15). Zhang W. M.., Huang W.Y.., Chen W. X.., Han L.., Zhang H. D.Molecules. 2014. 19:16416–16427.
(16). Jeong J. Y.., Jo Y. H.., Kim S. B.., Liu Q.., Lee J. W.., Mo E. J.., Lee K. Y.., Hwang B. Y.., Lee M. K.Bioorg. Med. Chem. Lett. 2015. 25:2269–2274.
(17). Jeong J. Y.., Jo Y. H.., Lee K. Y.., Do S. G.., Hwang B. Y.., Lee M. K.Bioorg. Med. Chem. Lett. 2014. 24:2329–2333.
(18). Bezerra M. A.., Santelli R. E.., Oliveira E. P.., Villar L. S.., Escaleira L. A.Talanta. 2008. 76:965–977.
(19). Ferreira S. L. C.., Bruns R. E.., Ferreira H. S.., Matos G. D.., David J. M.., Brandão G. C.., Da Silva E. G. P.., Portugal L. A.., dos Reis P. S.., Souza A. S.., dos Santos W. N. L.Anal. Chim. Acta. 2007. 597:179–186.
(20). Kim S. B.., Jo Y. H.., Liu Q.., Ahn J. H.., Hong I. P.., Han S. M.., Hwang B. Y.., Lee M. K.Molecules. 2015. 20:19764–19774.
(21). Lambert J. D.., Elias R. J.Arch. Biochem. Biophys. 2010. 501:65–72.
(22). Senthil K. V.., Arulmathi K.., Srividhya R.., Kalaiselvi P.Exp. Gerontol. 2008. 43:176–18.
(23). Jovanovic S. V.., Hara Y.., Steenken S.., Simic M. G. J.Am. Chem. Soc. 1995. 117:9881–9888.

Fig. 1.
Chemical structure of EGCG.
nps-22-270f1.tif
Fig. 2.
(A) HPLC chromatogram of EGCG and (B) HPLC chromatogram of GTE.
nps-22-270f2.tif
Fig. 3.
Response surface plotanalysis of extraction solvent (X1), extraction temperature (X2) and extraction time (X3) on antioxidant activity.
nps-22-270f3.tif
Fig. 4.
Correlation of EGCG or EGCG content in GTE and with antioxidant activity.
nps-22-270f4.tif
Table 1.
A Box-Behnken design for independent variables and their responses
Run Coded variables Actual variables Observed values
X1 X2 X3 Extraction solvent (ethanol, %) Extraction temperature (ºC) Extraction time (min) Antioxidant activity (%) EGCG content (ìg/mg extract)
1 –1 0 –1 0 40 3 46.5 16.9
2 1 0 –1 100 40 3 69.3 13.1
3 –1 0 1 0 40 15 52.0 31.7
4 1 0 1 100 40 15 64.8 17.5
5 0 0 0 50 40 9 85.2 115.1
6 0 –1 1 50 10 15 57.9 10.9
7 –1 –1 0 0 10 9 51.2 40.0
8 1 1 0 100 70 9 71.9 29.2
9 0 –1 –1 50 10 3 82.3 105.4
10 0 –1 1 50 10 15 82.1 107.3
11 0 1 –1 50 70 3 83.4 98.2
12 0 1 1 50 70 15 86.3 111.6
13 0 0 0 50 40 9 81.7 107.1
14 0 0 0 50 40 9 83.6 109.9
15 1 0 –1 100 40 3 44.9 26.5
Table 2.
Regression coefficients and their significances in the second-order polynomial regression equation forantioxidant activity of GTE
  Coefficient Standarderror coefficient t value p value
Intercept 55.409 5.370 10.317 <0.001
X1 –1.245 0.079 –15.818 <0.001
X2 0.116 0.795 0.146 0.889
X3 –0.076 0.149 –0.509 0.632
X12 0.011 0.001 19.047 <0.001
X22 –0.024 0.038 –0.637 0.552
X32 0.001 0.002 0.588 0.582
X1X2 0.008 0.004 1.882 0.119
X1X3 –0.001 0.001 –1.457 0.205
X1X2 –0.004 0.007 –0.577 0.589
Table 3.
ANOVA for response surface regression equation
  Sum of square Degree of freedom Mean square F value p value
Regression 3297.48 9 366.387 52.4 <0.001
Residual error 34.96 5 6.992 2.0  
Lack-of-fit 28.71 3 9.569 3.06 0.256
Pure error 6.25 2 3.126    
Total 3332.44 14      

R2 = 0.990, adjusted R2 = 0.971

Table 4.
Predicted and observed values of antioxidant activity yield under optimized conditions
Extraction conditions Antioxidant activity (%)
Extraction solvent (ethanol, %) Extraction time (min) Extraction temperature (ºC) Predicted Observed
57.6 15.0 70.0 88.6 88.4
TOOLS
Similar articles