Journal List > Nat Prod Sci > v.22(3) > 1060613

Seo, Do, Lee, Lee, Wahedi, Park, and Kim: Modulation of Melanin Synthesis by Amaranthus spp. L Seed Extract in Melan-a Cells

Abstract

Anti-melanogenic effects of amaranth (AT), one of the key source of squalene, were investigated in melanocytes. Amaranth seed powder was extracted with water and melan-a cells were treated with various concentrations of AT. By using HPLC, content of myo-inositol, one of potential active components, was measured in the crude extract of AT.AT reduced the melanin content in melan-a melanocytes and down-regulated melanogenic enzyme activity such as tyrosinase, TRP-1 and TRP-2. By regulating melanogenic enzyme activity, AT may be a potential natural source for whitening agent. Myo-inositol was detected in AT by HPLC and may be one of the active compounds from AT involved in the regulation of anti-melanogenesis. In this study, we demonstrated that AT has anti-melanogenesis properties. This new function of amaranth may be useful in the development of new skin-whitening products and its value as food.

REFERENCES

(1). Spritz R. A, Hearing V. J. Jr.Adv Hum Genet. 1994; 22:1–45.
(2). Kadekaro A. L., Chen J., Yang J., Chen S., Jameson J., Swope V. B., Cheng T., Kadakia M., Abdel-Malek Z.Mol. Cancer Res. 2012; 10:778–786.
(3). Chou W. C., Takeo M., Rabbani P., Hu H., Lee W., Chung, Y. R.;Carucci J., Overbeek P., Ito M.Nat. Med. 2013; 19:924–929.
(4). Wasmeier C., Hume A. N., Bolasco G., Seabra M. C. J.Cell Sci. 2008; 121:3995–3999.
(5). Kim H. J., Lee J. H., Shin M. K., Hyun Leem K., Kim Y. J., Lee M. H. J.Cosmet. Sci. 2013; 64:89–98.
(6). Lee T. H., Seo J. O., Baek S. H., Kim S. Y.Biomol Ther (Seoul). 2014; 22:35–40.
(7). Bertolotto C., Abbe P., Hemesath T. J., Bille K., Fisher D. E., Ortonne J. P., Ballotti R. J.Cell Biol. 1998; 142:827–835.
(8). Bentley N. J., Eisen T., Goding C. R.Mol. Cell Biol. 1994; 14:7996–8006.
(9). Chang T. S.Int. J. Mol. Sci. 2009; 10:2440–2475.
(10). Lucas A. M., Thody A. J., Shuster S.Peptides. 1987; 8:955–960. 1995.
(11). Orlow S. J. J.Invest. Dermatol. 1995; 105:3–7.
(12). Jimenez-Cervantes C., Garcia-Borron J. C., Valverde P., Solano F., Lozano J. A.Eur. J. Biochem. 1993; 217:549–556.
(13). Mars U., Larsson B. S.Pigment. Cell Res. 1995; 8:194–201.
(14). Kamakshi R. J.Cosmet. Sci. 2012; 63:43–54.
(15). Kobayashi T., Urabe K., Winder A., Jiménez-Cervantes C., Imokawa G., Brewington T., Solano F., García-Borrón J. C., Hearing V. J.EMBO. J. 1994; 13:5818–5825.
(16). Moon E., Kim A. J., Kim S. Y.Biomol. Ther (Seoul). 2012; 20:340–345.
(17). Cordell G. A., Colvard M. D. J.Nat. Prod. 2012; 75:514–525.
(18). Jung S., Lee J. H., Lee Y. C., Moon H. I.Immunopharmacol. Immunotoxicol. 2012; 34:210–212.
(19). Perales-Sánchez J. X., Reyes-Moreno C., Gómez-Favela M. A., Milán-Carrillo J., Cuevas-Rodríguez E. O., Valdez-Ortiz A., Gutiérrez-Dorado R.Plant Foods Hum. Nutr. 2014; 69:196–202.
(20). López V. R., Razzeto G. S., Giménez M. S., Escudero N. L.Plant Foods Hum. Nutr. 2011; 66:157–162.
(21). Kraujalis P., Venskutonis P. R., Kraujalien V., Pukalskas A.Plant Foods Hum. Nutr. 2013; 68:322–328.
(22). Pedersen H. A., Steffensen S. K., Christophersen C., Mortensen A. G., Jørgensen L. N., Niveyro S., de Troiani R. M., Rodríguez-Enríquez R. J., Barba-de la Rosa A. P., Fomsgaard I. S. J.Agric. Food Chem. 2010; 58:6306–6311.
(23). Tikekar R. V., Ludescher R. D., Karwe M. V. J.Agric. Food Chem. 2008; 56:10675–10678.
(24). Rodas B., Bressani R.Arch. Latinoam. Nutr. 2009; 59:82–87.
(25). Jiménez-Cervantes C., Martínez-Esparza M., Pérez C., Daum N., Solano F., García-Borrón J. C. J.Cell Sci. 2001; 114:2335–2344.
(26). López-Mejía O. A., López-Malo A., Palou E.Arch. Latinoam. Nutr. 2014; 64:50–58.
(27). Medoua G. N., Oldewage-Theron W. H. J.Food Sci. Technol. 2014; 51:736–742.
(28). Hosoi J., Abe E., Suda T., Kuroki T.Cancer Res. 1985; 45:1474–1478.
(29). Kunyanga C. N., Imungi J. K., Okoth M., Momanyi C., Biesalski H. K., Vadivel V. J.Food Sci. 2011; 76:C560–567.
(30). Huang H. C., Hsieh W. Y., Niu Y. L., Chang T. M.Int. J. Mol. Sci. 2014; 15:16665–16679.
(31). Shi Y., Luo L. F., Liu X. M., Zhou Q., Xu S. Z., Lei T. C.PLoS One. 2014; 9:e93589.
(32). Caselato-Sousa V. M., Amaya-Farfán J. J.Food Sci. 2012; 77:R93–104.
(33). Jun H. J., Roh M., Kim H. W., Houng S. J., Cho B., Yun E. J., Hossain M. A., Lee H., Kim K. H., Lee S. J.Food Sci.Biotechnol. 2011; 20:1051–1059.
(34). del Marmol V., Beermann F.FEBS Lett. 1996; 381:165–168.
crossref
(35). Kim D. S., Kim S. Y., Park S. H., Choi Y. G., Kwon S. B., Kim M. K., Na J. I., Youn S. W., Park K. C.Biol. Pharm. Bull. 2005; 28:2216–2219.
(36). Sun B. B., Qi L., Mu X. Y., Qiao J., Wang M. L.Talanta. 2013; 116:1121–1125.

Fig. 1.
Scheme of sample preparation. Simply present the steps of extraction of AT. A: Amaranthus spp. L Total extract, B: Hexane soluble fraction, C: Residue, D: EtoAc soluble fraction.
nps-22-168f1.tif
Fig. 2.
HPLC chromatogram for the determination of myo-inositol in Amaranth ushypocondriacus (A.D). A. Chromatogram of myo-inositol B. Chromatogram of AD.
nps-22-168f2.tif
Fig. 3.
Effects of Amaranth seed extract (AT) on melanin content and cell viability in melan-a cells. Melanin contents (A) and cell viability (B) were measured. CTL indicates normal conditions and Arbu indicate the use of arbutin as a positive control (μM). All sample (μ g/mL) were treated for 72 h. Data are expressed as mean ± S.D. of three experiments. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 compared with control.
nps-22-168f3.tif
Fig. 4.
Effects of AT on tyrosinase activity in melan-a cells. Melan-a cell originated tyrosinase activity was measured. CTL indicates normal conditions and KA indicate the use of kojic acid as a positive control (μM). Each samples were treated with μg/ mL. The results are expressed as mean ± S.D. of three experiments (∗p < 0.05).
nps-22-168f4.tif
Fig. 5.
Effects of Amaranth ushybridus (A.C) and Amaranth ushypocondriacus (A.D) on the expression of melanogenic enzymes in melan-a cells. To confirm the expression of melanogenic enzymes, melan-a cells were treated with 0.1, 1 and 10 μg/mL of A.C and A.D. Arbutin was used as a positive control (μ M). (A) Western blot analysis. Densitometric analysis of Tyrosinase (B), TRP-1 (C), TRP-2 (D) and MITF (F). Each band was normalized to that of α-tubulin.
nps-22-168f5.tif
Fig. 6.
Effects of each fraction of amaranth seed extract (AT) on melanin content and cell viability in melan-a cells Melanin contents (A) and cell viability (B) were measured. CTL indicates normal conditions and Arbu indicate the use of arbutin as a positive control (μM). All sample (μg/mL) were treated for 72 h. Data are expressed as mean ± S.D. of three experiments. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 compared with control.
nps-22-168f6.tif
Supplement 1.
Effects of Amaranth species on melanin content and cell viability in mouse melanoma B16F10 cells. Cell viability (A) and melanin contents (B) were measured. B16F10 cells were pre-stimulated by α-MSH (100 ng/ml). After treatment of α-MSH for 30 min, all sample were treated for 72 h.
nps-22-168fs1.tif
Supplement 2.
Effects of myo-inositol on melanin content and cell viability in Melan-a cells. Cell viability (A) and melanin contents (B) were measured. myo-inositol was treated for 72 h.
nps-22-168fs2.tif
Table 1.
Contents (μ g/mg) of myo-inositol in Amaranth ushypocondriacus (A.D).
  r2 Content
Myo-inositol 0.9955 49.036 ± 1.032
TOOLS
Similar articles