Journal List > Nat Prod Sci > v.22(2) > 1060603

Morgan, Jeon, Jeong, Yang, and Kim: Chemical Components from the Stems of Pueraria lobata and Their Tyrosinase Inhibitory Activity

Abstract

Phytochemical investigation of the stems of Pueraria lobata (Wild) Ohwi (Leguminosae), led to the isolation of eighteen known compounds: β-amyrone (1), (+)-pinoresinol (2), (+)-syringaresinol (3) (+)-syringaresinol-O-β-D-glucoside (4), (+)-lariciresinol (5), (−)-tuberosin (6), naringenin (7), liquiritigenin (8), isoliquiritigenin (9) genistein (10), daidzein (11) daidzin (12) daidzein 4',7-diglucoside (13) 2,4,4'-trihydroxy deoxybenzoin (14), S-(+)-1-hydroxy-3-(4-hydroxyphenyl)-1-(4-hydroxy-2-methoxy-phenyl)propan-2-one (15), methyl 2-O-β-D-glucopyra-nosylbenzoate (16), pyromeconic acid 3-O-β-D-glucopyranoside 6'- (O-4″-hydroxy-3-methoxybenzoate) (17), and allantion (18). The chemical structures of these compounds were elucidated from spectroscopic data and by comparison of those data with previously published results. The effects of isolated compounds on mushroom tyrosinase enzymatic activity were screened. The results indicated that, chloroform extract of P. lobata stems turned out to be having tyrosinase inhibitory effect, and only compounds 5, 8, 9, and 11 showed enzyme inhibitory activity, with IC50 values of 21.49 ± 4.44, 25.24 ± 6.79, 4.85 ± 2.29, and 17.50 ± 1.29 μM, respectively, in comparison with these of positive control, kojic acid (IC50 12.28 ± 2.72 μ M). The results suggest that P. lobata stems extract as well as its chemical components may represent as potential candidates for tyrosinase inhibitors.

REFERENCES

(1). Seo S. Y., Sharma V. K., Sharma N. J.Agric. Food Chem. 2003; 51:2837–2853.
(2). Nhiem N. X., Yen H. T., Luyen B. T. T., Tai B. H., Hoan P. V., Thao N. P., Anh H. L. T., Ban N. K., Kiem P. V., Minh C. V., Kim J. H., Jeon M. N., Kim Y. H.Bull. Korean Chem. Soc. 2015; 36:703–706.
(3). Cho Y. J., Son B. W., Jeong D. Y., Choi H. D., Park J. H. Kor. J.Pharmacogn. 1998; 29:193–197.
(4). Chen T. R., Shih S. C., Ping H. P., Wei Q. K. J.Food Drug Anal. 2012; 20:681–685.
(5). Hung V. P., Morita N.Food Chem. 2007; 105:749–755.
(6). Li G., Zhang Q., Wang Y.Zhongguo Zhong Yao Za Zhi. 2010; 35:3156–3160.
(7). Luo X. D., Wu S. H., Ma Y. B., Wu D. G.Acta Bot. Sin. 2001; 43:426–430.
(8). Xie L. H., Akao T., Hamasaki K., Deyama T., Hattori M.Chem. Pharm. Bull. 2003; 51:508–515.
(9). Park J. A., Kim H. J., Jin C. B., Lee K. T., Lee Y. S.Arch. Pharm. Res. 2003; 26:1009–1013.
(10). Shahat A. A., Abdel-Azim N. S., Pieters L., Vlietinck A. J.Fitoterapia. 2004; 75:771–773.
(11). Wang Q. H., Peng K., Tan L. H., Dai H. F.Molecules. 2010; 15:4011–4016.
(12). Shirataki Y., Tsuzuku T., Yokoe I., Hirano R. T., Komatsu M.Chem. Parm. Bull. 1990; 38:1712–1716.
(13). Kulesh N. I., Vasilevskaya N. A., Veselova M. V., Denisenko V. A., Fedoreev S. A.Chem. Nat. Compd. 2008; 44:712–714.
(14). Yahara S., Ogata T., Saijo R., Konishi R., Yamahara J., Miyahara K., Nohara T.Chem. Pharm. Bull. 1989; 37:979–987.
(15). Veitch N. C., Sutton P. S., Kite G. C., Ireland H. E. J.Nat. Prod. 2003; 66:210–216.
(16). Kim B. H., Kim C. M. Kor. J.Pharmacogn. 1995; 26:18–22.
(17). Yang M. C., Kim D. S., Jeong S. W., Ma J. Y.Korean J. Medicinal Crop. Sci. 2011; 19:446–455.
(18). Jun M., Fu H.-Y., Hong J., Wan X., Yang C. S., Ho C. T. J.Food Sci. 2003; 68:2117–2122.
(19). Kinjo J. E., Furusawa J. I., Baba J., Takeshita T., Yamasaki M., Ohara T.Chem. Pharm. Bull. 1987; 35:4846–4850.
(20). Ng L. T., Ko H. H., Lu T. M.Bioorg. Med. Chem. 2009; 17:4360–4366.
(21). Bezuidenhout S. C., Bezuidenhoudt B. C. B., Ferreira D.Phytochemistry. 1988; 27:2329–2334.
(22). Wang C., Zhang T. T., Du G. H., Zhang D. M. J.Asian Nat. Prod. Res. 2011; 13:817–825.
(23). Chai X., Su Y. F., Guo L. P., Wu D., Zhang J. F., Si C. L., Kim J. K., Bae Z. S.Biochem. Syst. Ecol. 2008; 36:216–218.
(24). Yin F., Hu L., Pan R.Chem. Pharm. Bull. 2004; 52:1440–1444.
(25). Khatib S., Nerya O., Musa R., Shmuel M., Tamir S., Vaya J.Bioorg. Med. Chem. 2005; 13:433–441.
(26). Wang Y., Curtis-Long M. J., Lee B. W., Yuk H. J., Kim D. W., Tan X. F., Park K. H.Bioorg. Med. Chem. 2014; 22:1115–1120.
(27). Kim N. K., Park H. M., Lee J. K., Ku K. M., Lee C. H. J.Agric. Food Chem. 2015; 63:8631–8639.

Fig. 1.
Chemical structures of isolated compounds (1–18).
nps-22-111f1.tif
Fig. 2.
Tyrosinase inhibitory activity of extracts obtained from stems of P. lobata.
nps-22-111f2.tif
Fig. 3.
Tyrosinase inhibitory activity of isolated compounds (1–18).
nps-22-111f3.tif
Table 1.
In vitro tyrosinase inhibitory activity of compounds 5, 8,9 and 11
Compound IC50 a (mM)
(+)-lariciresinol (5) 21.49 ± 4.44
liquiritigenin (8) 25.24 ± 6.79
isoliquiritigenin (9) 4.85 ± 2.29
daidzein (11) 17.5 ± 1.29
Kojic acidb 12.27 ± 2.72

a All compounds were examined in a set of experiments three times.

b Positive control

TOOLS
Similar articles