Journal List > Nat Prod Sci > v.22(1) > 1060600

Nugroho, Choi, and Park: Analysis of Flavonoid Composition of Korean Herbs in the Family of Compositae and their Utilization for Health

Abstract

Compositional differences in flavonoids are varied in the big family of Compositae. By summarizing our previous analytical studies and other scientific evidences, new strategy will be possible to further analyze flavonoids and utilize them for human health. The HPLC analytical method has been established in terms of linearity, sensitivity, accuracy, and precision. Herbs of the family of Compositae have considerable amounts of peroxynitrite (ONOO)-scavenging effects and their phenolic substances. These effects may contribute to the prevention of disease associated with excess production of ONOO, depending on the high content of flavonoid substances.

REFERENCES

(1). Fraisse D., Felgines C., Texier O., Lamaison J. L.Food Nutr. Sci. 2011; 2:181–192.
(2). Nugroho A., Kim K. H., Lee K. R., Alam M. B., Choi J. S., Kim W. B., Park H. J.Arch. Pharm. Res. 2009; 32:1361–1367.
(3). Nugroho A., Lee K. R., Alam M. B., Choi J. S., Park H. J.Arch. Pharm. Res. 2010; 33:703–708.
(4). Pacher P., Beckman J. S., Liaudet L.Physiol. Rev. 2007; 87:315–424.
(5). Nugroho A., Kim M. H., Lim S. C., Choi J. W., Choi J. S., Park H. J.Nat. Prod. Sci. 2011; 17:342–349.
(6). Nugroho A., Lim S. C., Lee C. M., Choi J. S., Park H. J. J.Pharm. Biomed. Anal. 2012; 61:247–251.
(7). Nugroho A., Kim M. H., Lee C. M., Choi J. S., Lee S. H., Park H. J.Nat. Prod. Sci. 2012; 18:39–46.
(8). Nugroho A., Lim S. C., Choi J. W., Park H. J.Arch. Pharm. Res. 2013; 36:51–60.
(9). Nugroho A., Lim S. C., Byeon J. S., Choi J. S., Park H. J. J.Pharm. Biomed. Anal. 2013; 76:139–144.
(10). Schmidt R. J.Clin. Dermatol. 1986; 4:46–61.
(11). Funk V. A., Susanna A., Stuessy T. F., Robinson H.Classifi-cation of Compositae. Systematics, evolution, and biogeography of the Compositae. Funk V.A., Susanna A., Bayer R. J., editorsInternational Association for Plant Taxonomy;Vienna: 2009. p. 174–189.
(12). Konarev A. V., Anisimova I. N., Gavrilova V. A., Vachrusheva T. E., Konechnaya G. Y., Lewis M., Shewry P. R.Phytochemistry. 2002; 59:279–291.
(13). Wegiera M., Smolarz H. D., Jedruch M., Korczak M., Kopro ní K.Acta Pol. Pharm. 2012; 69:263–268.
(14). Jan G., Khan M. A., Jan F.Ethnobot. Leaflets. 2009; 13:1205–1215.
(15). Ha T. J., Hwang S. W., Jung H. J., Park K. H., Yang M. S.Agric. Chem. Biotechnol. 2002; 45:170–172.
(16). Hitmi A., Barthomeuf C., Coudret A. J.Plant Phys. 1998; 153:233–236.
(17). Nicholson R. L., Hammerschmidt R.Annu. Rev. Phytopathol. 1992; 30:369–389.
crossref
(18). Ksouri R., Megdiche W., Falleh H., Trabelsi N., Boulaaba M., Smaoui A., Abdelly C. C. R.Biol. 2008; 331:865–873.
(19). Han H., Baik B. K.Int. J. Food Sci. Tech. 2008; 43:1971–1978.
crossref
(20). Youdim K. A., Shukitt-Hale B., Joseph J. A.Free Radic. Biol. Med. 2004; 37:1683–1693.
(21). Haenen G. R., Paquay J. B., Korthouwer R. E., Bast A.Biochem. Biophys. Res. Commun. 1997; 236:591–593.
(22). Korda M., Kubant R., Patton S., Malinski T.Am. J. Physiol. Heart Circ. Physiol. 2008; 295:1514–1521.
(23). Rayalam S., Della-Fera M. A., Baile C. A. J.Nutr. Biochem. 2008; 19:717–726.
(24). Tórtora V., Quijano C., Freeman B., Radi R., Castro L.Free Radic. Biol. Med. 2007; 42:1075–1088.
(25). Zhu S., Haddad I. Y., Matalon S.Arch. Biochem. Biophys. 1996; 333:282–290.
(26). Radi R., Beckman J. S., Bush K. M., Freeman B.A.J. Biol. Chem. 1991; 266:4244–4250.
(27). Tamura Y., Nakajima K., Nagayasu K., Takabayashi C.Phytochemistry. 2002; 59:275–278.
(28). Velíšek J., Davídek J., Cejpek K.Czech J. Food Sci. 2008; 26:73–98.
(29). Bowles D., Isayenkova J., Lim E. K., Poppenberger B.Curr. Opin. Plant Biol. 2005; 8:254–263.
(30). Agati G., Biricolti S., Guidi L., Ferrini F., Fini A., Tattini M. J.Plant Physiol. 2011; 168:204–212.
(31). Karki S., Park H. J., Nugroho A., Kim E. J., Jung H. A., Choi J. S. J.Med. Food. 2015; 18:83–94.
(32). Nugroho A., Choi J. S., An H. J., Park H. J.Nat. Prod. Sci. 2015; 21:42–48.
(33). Shimoi K., Okada H., Furugori M., Goda T., Takase S., Suzuki M., Hara Y., Yamamoto H., Kinae N.FEBS Lett. 1998; 438:220–224.
(34). Schneider H., Blaut M.Arch. Microbiol. 2000; 173:71–75.
(35). Lu J., Feng X., Sun Q., Lu H., Manabe M., Sugahara K., Ma D., Sagara Y., Kodama H.Clin. Chim. Acta. 2002; 316:95–99.
(36). Hu C., Kitts D. D.Mol. Cell. Biochem. 2004; 265:107–113.
(37). Jin M., Yang J. H., Lee E. K., Lu Y., Kwon S., Son K. H., Son J. K., Chang H. W.Biol. Pharm. Bull. 2009; 32:1500–1503.
(38). Qiusheng Z., Xiling S., Xubo X. S., Meng S., Changhai W.Pharmazie. 2004; 59:286–289.
(39). Vilela F. C., Soncini R., Giusti-Paiva A. J.Ethnopharmacol. 2009; 124:325–327.
(40). Freitas C. S., Baggio C. H., Finau J., Anginoni M., Pizzolatti M. G., Santos A. R., Marques M. C. J.Pharm. Pharmacol. 2008; 60:1105–1110.
(41). Kim J. S., Kwon C. S., Son K. H.Biosci. Biotechnol. Biochem. 2000; 64:2458–2461.
(42). Han X. H., Hong S. S., Hwang J. S., Lee M. K., Hwang B. Y., Ro J. S.Arch. Pharm. Res. 2007; 30:13–17.
(43). Brown J. E., Rice-Evans C. A.Free Radic. Res. 1998; 29:247–255.
(44). Min Y. S., Bai K. L., Yim S. H., Lee Y. J., Song H. J., Kim J. H., Ham I. H., Whang W. K., Sohn U. D.Arch. Pharm. Res. 2006; 29:484–489.
(45). Nagy M., Krizková L., Mucaji P., Kontseková Z., Sersen F., Krajcovic J.Molecules. 2009; 14:509–518.
(46). Vilela F. C., Padilha-Mde M., Alves-da-Silva G., Soncini R., Giusti-Paiva A. J.Med. Food. 2010; 13:219–222.
(47). Choi S. M., Kim B. C., Cho Y. H., Choi K. H., Chang J., Park M. S., Kim M. K., Cho K. H., Kim J. K.Chonnam Med. J. 2014; 50:45–51.
(48). Salqueiro J. B., Ardenghi P., Dias M., Ferreira M. B. C., Izquierdo I., Medina J. H.Pharmacol. Biochem. Behav. 1997; 58:887–891.
(49). Patil S. P., Jain P. D., Sancheti J. S., Ghumatkar P. J., Tambe R., Sathaye S.Neuropharmacolgy. 2014; 86:192–202.
(50). Ha S. K., Moon E., Lee P., Ryu J. H., Oh M. S., Kim S. Y.Neurochem. Res. 2012; 37:1560–1567.
(51). Watanabe K., Kanno S., Tomizawa A., Yomogida S., Ishikawa M.Oncol. Rep. 2012; 27:204–209.
(52). Fan S. Y., Zeng H. W., Pei Y. H., Li L., Ye J., Pan Y. X., Zhang J. G., Yuan X., Zhang W. D. J.Ethnopharmacol. 2012; 141:647–652.
(53). Calderone V., Chericoni S., Martinelli C., Testai L., Nardi A., Morelli I., Breschi M. C., Martinotti E.Naunyn Schmiedebergs Arch. Pharmacol. 2004; 370:290–298.
(54). Kim H. R., Park C. G., Jung J. Y.Int. J. Mol. Med. 2014; 33:317–324.
(55). Lim H., Son K. H., Chang H. W., Bae K., Kang S. S., Kim H. P.Biol. Pharm. Bull. 2008; 31:2063–2067.
(56). Yoo Y. M., Nam J. H., Kim M. Y., Choi J., Park H. J.Biol Pharm Bull. 2008; 31:760–764.
(57). Juckmeta T., Thongdeeying P., Itharat A.Evid. Based Complement. Alternat. Med. 2014; 2014:828760.
(58). Bors W., Heller W., Michael C., Saran M.Adv. Exp. Med. Biol. 1990; 264:165–170.
(59). Quiñones M., Miguel M., Aleixandre A.Pharmacol. Res. 2013; 68:125–131.
(60). Iwai K., Kishimoto N., Kakino Y., Mochida K., Fujita T. J.Agric. Food Chem. 2004; 52:4893–4898.

Fig. 1.
Characteristics of Compositae.
The head with ray florets arranged around the perimeter, disc florets in the center, and an involucre with bracts (phyllaries) surrounding the outermost florets. B. The pollen is released via the style pushing out through the anthers, which are fused at the margins; sometimes the style branches are recurved and come in contact with the style shaft. C. Some of the achene (cypsela) and pappus types found in Compositae (Funk et al., 2009).
nps-22-1f1.tif
Fig. 2.
Traditional use of Hemitepta lyrata as one of Compositae herbs.
nps-22-1f2.tif
Fig. 3.
Chemical structures of several flavonols and flavones.
nps-22-1f3.tif
Fig. 4.
Structure of luteolin, acacetin, Lut-7-Glc, Lut-7-GlcU and acacetin identified from Y. japonica and their presumed pathway. A dotted arrow represents a less favored pathway.
nps-22-1f4.tif
Fig. 5.
HPLC chromatograms of MeOH extracts of the four Compositae herbs (Compound names are abbreviated).
nps-22-1f5.tif
Fig. 6.
Composition of flavonoids and caffeoylquinic acids in the five Compositae herbs.
nps-22-1f6.tif
Fig. 7.
Peroxynitrite-scavenging activities (IC50 s) of the flavonoids and caffeoylquinic acids identified in the five Compositae herbs.
nps-22-1f7.tif
Table 1.
Recapitulation of the phenolics identified in the five Compositae herbs
Type Compounds C. setidens S. grandifolia S. brachyotus C. boreale H. lyrata
  Caffeic acid        
  CAME        
Caffeoyl type Chlorogenic acid
  3,4-DQ        
  3,5-DQ      
  Quercetin        
  Isoquercitrin        
Flavonol type Saxifragin        
Hyperoside        
  Rutin      
  Kp 3-rut        
  Luteolin        
  Luteolin 7-glc        
  Luteolin 7-glcU        
  Luteolin 7-rut        
  Acacetin      
  Linarin    
Flavone type Acacetintrisaccharide        
  Pectolinarigenin        
  Pectolinarin      
  Apigenin        
  Isorhoifolin        
  Diosmetin        
  Diosmin        
Table 2.
Linearities and detection/quantification limits of the standard compounds
Standard compound tR (min) Linear regressiona R2b LODc (µg/ml) LOQd (µg/ml)
Chlorogenic acid 8.32 y = 166.80 x + 58.46 0.9998 0.30 1.01
Caffeic acid 10.36 y = 253.42 x + 50.84 0.9999 0.22 0.72
Saxifragin 14.78 y = 414.62 x + 65.93 0.9998 0.12 0.40
Luteolin 7-rutinoside 15.63 y = 175.25 x + 34.55 0.9999 0.38 1.26
Rutin 16.13 y = 143.53 x + 15.18 0.9999 0.42 1.39
Luteolin 7-glucoside 16.29 y = 200.82 x + 40.73 0.9999 0.34 1.13
Hyperoside 16.37 y = 217.04 x + 46.33 0.9999 0.14 0.46
Luteolin 7-glucuronide 16.63 y = 48.813 x + 95.76 0.9997 0.85 2.83
Isoquercitrin 16.76 y = 472.75 x + 75.62 0.9999 0.11 0.36
3,5-dicaffeoylquinic acid 16.95 y = 157.87 x + 75.02 0.9999 0.27 0.90
Isorhoifolin 18.09 y = 232.85 x + 65.10 0.9999 0.17 0.57
Acacetintrisaccharide 18.42 y = 104.76 x + 81.54 0.9999 0.30 1.01
Kaempferol 3-rutinoside 18.71 y = 236.19 x + 54.25 0.9998 0.22 0.72
3,4-dicaffeoylquinic acid 18.95 y = 133.62 x + 45.50 0.9999 0.23 0.76
Diosmin 19.10 y = 244.78 x + 53.54 0.9999 0.21 0.71
Caffeic acid methyl ester 19.68 y = 172.39 x + 44.58 0.9999 0.12 0.40
Quercetin 24.79 y = 659.28 x + 87.33 0.9999 0.09 0.23
Linarin 24.85 y = 309.18 x + 30.86 0.9999 0.23 0.76
Luteolin 25.26 y = 399.22 x + 164.9 0.9997 0.25 0.83
Pectolinarin 25.58 y = 103.76 x + 60.10 0.9997 0.43 1.44
Apigenin 28.67 y = 529.46 x + 49.28 0.9999 0.11 0.35
Diosmetin 29.53 y = 741.76 x + 96.14 0.9999 0.01 0.04
Acacetin 36.88 y = 369.27 x + 45.71 0.9999 0.15 0.50
Pectolinarigenin 37.73 y = 199.06 x + 33.37 0.9999 0.20 0.67

a y, peak area at 254 nm; x, concentration of the standard (µg/ml);

b R

2 correlation coefficient for 6 data points in the calibration curves (n = 4);

c LOD, limit of detection (S/N = 3);

d LOQ, limit of quantification (S/N = 10).

Table 3.
Contents of the flavonoids and caffeoylquinic acids in MeOH extracts of the five Compositae herbs (mg/g)
Type Compounds C. setidens S. grandifolia S. brachyotus C. boreale H. lyrata
Leaf Flower
  Caffeic acid           0.69
  CAME 0.51          
Caffeic acid-type Chlorogenic acid 8.41 89.87 2.53 20.86 13.02 4.22
  3,4-DQ 5.74          
  3,5-DQ       60.43 47.28 4.32
  Quercetin   0.99        
  Isoquercitrin   24.46        
Flavonol-type Saxifragin   30.76        
Hyperoside 4.33          
  Rutin   33.74       8.81
  Kp 3-rut           7.03
  Luteolin     1.05      
  Luteolin 7-glc     1.64      
  Luteolin 7-glcU     143.01      
  Luteolin 7-rut     26.7      
  Acacetin       0.86 0.46 0.74
  Linarin 18.99     63.80 43.59 23.2
Flavone-type Acacetintrisaccharide       2.99 6.97  
  Pectolinarigenin           0.24
  Pectolinarin 156.48         1.10
  Apigenin           1.59
  Isorhoifolin           0.49
  Diosmetin           0.16
  Diosmin           5.40
  Total amount 194.46 179.82 174.93 148.94 111.32 57.99
Table 4.
Contents of the flavonoids and caffeoylquinic acids in the dry plant material (DM) of the five Compositae herbs (mg/g of dry weight)
Type Compounds C. setidens S. grandifolia S. brachyotus C. boreale H. lyrata
Leaf Flower
  Caffeic acid           0.13
Caffeic acid-type CAME 0.08          
Chlorogenic acid 1.35 12.35 0.32 3.90 2.54 0.78
3,4-DQ 0.92          
  3,5-DQ       11.30 9.22 0.80
  Quercetin   0.14        
  Isoquercitrin   3.37        
Flavonol-type Saxifragin   4.24        
Hyperoside 0.69          
  Rutin   4.65       1.62
  Kp 3-rut           1.29
  Luteolin     0.13      
  Luteolin 7-glc     0.21      
  Luteolin 7-glcU     18.30      
  Luteolin 7-rut     3.40      
  Acacetin       0.16 0.09 0.14
  Linarin 3.06     11.93 8.50 4.26
Flavone-type Acacetintrisaccharide       0.56 1.36  
  Pectolinarigenin           0.05
  Pectolinarin 25.19         0.20
  Apigenin           0.29
  Isorhoifolin           0.09
  Diosmetin           0.03
  Diosmin           0.99
  Total amount 31.29 24.75 22.36 27.85 21.71 10.67
Table 5.
Peroxynitrite-scavenging activities (IC50 s) of the flavonoids and caffeoylquinic acids identified in the five Compositae herbs
Type Compound Concentration (µ g/ml) IC50
50.00 10.00 2.00 0.40 0.08 (µ g/ml) µ M
  Caffeic acid 97.34±0.23 73.95±0.84 30.65±3.21 0.89 4.94
Caffeic acid-type CAME 93.32±0.30 67.33±1.02 18.67±1.90 1.31 6.76
Chlorogenic ac. 94.34±0.58 78.70±1.85 56.56±4.38 12.67±8.55 0.47 1.34
3,4-DQ 93.05±0.68 75.31±1.18 47.92±0.65 15.32±4.65 0.55 1.06
  3,5-DQ 94.26±1.11 86.03±2.31 50.53±3.18 17.72±4.90 0.43 0.83
  Quercetin 94.82±1.49 82.68±3.19 47.44±3.93 6.88±4.22 0.58 1.93
  Isoquercitrin 94.58±1.69 76.71±3.35 25.17±3.11 3.97±2.57 0.88 1.90
  Saxifragin 95.45±1.84 86.40±0.56 61.29±1.51 19.59±8.79 0.33 0.71
Flavonol-type Hyperoside 95.70±0.27 75.62±4.21 26.94±3.22 9.97±4.58 0.80 1.73
Rutin 97.30±0.21 81.06±1.02 48.89±1.10 6.34±3.43 0.57 0.94
  Kaempferol 94.41±0.11 92.50±1.45 28.95±4.18 3.58±3.88 0.71 2.48
  Astragalin 74.38±1.18 42.50±2.02 36.66±4.64 13.77±4.29 1.60 4.02
  Kp 3-rut 71.34±1.71 38.97±2.34 25.93±3.41 19.32±5.64 2.47 4.15
  Luteolin 97.56±5.71 96.15±0.27 85.85±3.70 10.80±9.65 0.23 0.81
  Luteolin 7-glc 97.16±0.71 88.80±1.27 54.34±3.41 17.01±3.50 0.39 0.86
  Luteolin 7-glcU 96.19±2.17 83.36±0.31 48.39±1.57 11.48±4.33 0.52 1.12
  Acacetin 82.33±0.45 59.54±1.22 21.66±1.34 7.87 27.72
Flavone-type Linarin 97.45±0.24 66.89±0.98 32.56±1.21 4.60 7.77
  Acacetintrisaccharide 97.57±0.31 81.44±1.39 45.14±1.24 2.19 2.91
  Pectolinarigenin 88.69±0.39 66.00±1.46 30.46±1.13 5.23 16.99
  Pectolinarin 90.65±0.59 69.94±0.68 35.86±1.36 4.03 6.47
  Apigenin 54.49±1.85 36.73±1.45 18.22±2.21 33.19 122.9
Control L-penicillamine 91.76±1.05 83.55±1.51 47.28±2.89 8.75±5.87 0.57 3.86

Data represent mean±SD (n = 2).

TOOLS
Similar articles