Abstract
Compositional differences in flavonoids are varied in the big family of Compositae. By summarizing our previous analytical studies and other scientific evidences, new strategy will be possible to further analyze flavonoids and utilize them for human health. The HPLC analytical method has been established in terms of linearity, sensitivity, accuracy, and precision. Herbs of the family of Compositae have considerable amounts of peroxynitrite (ONOO−)-scavenging effects and their phenolic substances. These effects may contribute to the prevention of disease associated with excess production of ONOO−, depending on the high content of flavonoid substances.
REFERENCES
(1). Fraisse D., Felgines C., Texier O., Lamaison J. L.Food Nutr. Sci. 2011; 2:181–192.
(2). Nugroho A., Kim K. H., Lee K. R., Alam M. B., Choi J. S., Kim W. B., Park H. J.Arch. Pharm. Res. 2009; 32:1361–1367.
(3). Nugroho A., Lee K. R., Alam M. B., Choi J. S., Park H. J.Arch. Pharm. Res. 2010; 33:703–708.
(4). Pacher P., Beckman J. S., Liaudet L.Physiol. Rev. 2007; 87:315–424.
(5). Nugroho A., Kim M. H., Lim S. C., Choi J. W., Choi J. S., Park H. J.Nat. Prod. Sci. 2011; 17:342–349.
(6). Nugroho A., Lim S. C., Lee C. M., Choi J. S., Park H. J. J.Pharm. Biomed. Anal. 2012; 61:247–251.
(7). Nugroho A., Kim M. H., Lee C. M., Choi J. S., Lee S. H., Park H. J.Nat. Prod. Sci. 2012; 18:39–46.
(8). Nugroho A., Lim S. C., Choi J. W., Park H. J.Arch. Pharm. Res. 2013; 36:51–60.
(9). Nugroho A., Lim S. C., Byeon J. S., Choi J. S., Park H. J. J.Pharm. Biomed. Anal. 2013; 76:139–144.
(10). Schmidt R. J.Clin. Dermatol. 1986; 4:46–61.
(11). Funk V. A., Susanna A., Stuessy T. F., Robinson H.Classifi-cation of Compositae. Systematics, evolution, and biogeography of the Compositae. Funk V.A., Susanna A., Bayer R. J., editorsInternational Association for Plant Taxonomy;Vienna: 2009. p. 174–189.
(12). Konarev A. V., Anisimova I. N., Gavrilova V. A., Vachrusheva T. E., Konechnaya G. Y., Lewis M., Shewry P. R.Phytochemistry. 2002; 59:279–291.
(13). Wegiera M., Smolarz H. D., Jedruch M., Korczak M., Kopro ní K.Acta Pol. Pharm. 2012; 69:263–268.
(14). Jan G., Khan M. A., Jan F.Ethnobot. Leaflets. 2009; 13:1205–1215.
(15). Ha T. J., Hwang S. W., Jung H. J., Park K. H., Yang M. S.Agric. Chem. Biotechnol. 2002; 45:170–172.
(16). Hitmi A., Barthomeuf C., Coudret A. J.Plant Phys. 1998; 153:233–236.
(18). Ksouri R., Megdiche W., Falleh H., Trabelsi N., Boulaaba M., Smaoui A., Abdelly C. C. R.Biol. 2008; 331:865–873.
(20). Youdim K. A., Shukitt-Hale B., Joseph J. A.Free Radic. Biol. Med. 2004; 37:1683–1693.
(21). Haenen G. R., Paquay J. B., Korthouwer R. E., Bast A.Biochem. Biophys. Res. Commun. 1997; 236:591–593.
(22). Korda M., Kubant R., Patton S., Malinski T.Am. J. Physiol. Heart Circ. Physiol. 2008; 295:1514–1521.
(23). Rayalam S., Della-Fera M. A., Baile C. A. J.Nutr. Biochem. 2008; 19:717–726.
(24). Tórtora V., Quijano C., Freeman B., Radi R., Castro L.Free Radic. Biol. Med. 2007; 42:1075–1088.
(25). Zhu S., Haddad I. Y., Matalon S.Arch. Biochem. Biophys. 1996; 333:282–290.
(26). Radi R., Beckman J. S., Bush K. M., Freeman B.A.J. Biol. Chem. 1991; 266:4244–4250.
(27). Tamura Y., Nakajima K., Nagayasu K., Takabayashi C.Phytochemistry. 2002; 59:275–278.
(28). Velíšek J., Davídek J., Cejpek K.Czech J. Food Sci. 2008; 26:73–98.
(29). Bowles D., Isayenkova J., Lim E. K., Poppenberger B.Curr. Opin. Plant Biol. 2005; 8:254–263.
(30). Agati G., Biricolti S., Guidi L., Ferrini F., Fini A., Tattini M. J.Plant Physiol. 2011; 168:204–212.
(31). Karki S., Park H. J., Nugroho A., Kim E. J., Jung H. A., Choi J. S. J.Med. Food. 2015; 18:83–94.
(32). Nugroho A., Choi J. S., An H. J., Park H. J.Nat. Prod. Sci. 2015; 21:42–48.
(33). Shimoi K., Okada H., Furugori M., Goda T., Takase S., Suzuki M., Hara Y., Yamamoto H., Kinae N.FEBS Lett. 1998; 438:220–224.
(34). Schneider H., Blaut M.Arch. Microbiol. 2000; 173:71–75.
(35). Lu J., Feng X., Sun Q., Lu H., Manabe M., Sugahara K., Ma D., Sagara Y., Kodama H.Clin. Chim. Acta. 2002; 316:95–99.
(36). Hu C., Kitts D. D.Mol. Cell. Biochem. 2004; 265:107–113.
(37). Jin M., Yang J. H., Lee E. K., Lu Y., Kwon S., Son K. H., Son J. K., Chang H. W.Biol. Pharm. Bull. 2009; 32:1500–1503.
(38). Qiusheng Z., Xiling S., Xubo X. S., Meng S., Changhai W.Pharmazie. 2004; 59:286–289.
(39). Vilela F. C., Soncini R., Giusti-Paiva A. J.Ethnopharmacol. 2009; 124:325–327.
(40). Freitas C. S., Baggio C. H., Finau J., Anginoni M., Pizzolatti M. G., Santos A. R., Marques M. C. J.Pharm. Pharmacol. 2008; 60:1105–1110.
(41). Kim J. S., Kwon C. S., Son K. H.Biosci. Biotechnol. Biochem. 2000; 64:2458–2461.
(42). Han X. H., Hong S. S., Hwang J. S., Lee M. K., Hwang B. Y., Ro J. S.Arch. Pharm. Res. 2007; 30:13–17.
(43). Brown J. E., Rice-Evans C. A.Free Radic. Res. 1998; 29:247–255.
(44). Min Y. S., Bai K. L., Yim S. H., Lee Y. J., Song H. J., Kim J. H., Ham I. H., Whang W. K., Sohn U. D.Arch. Pharm. Res. 2006; 29:484–489.
(45). Nagy M., Krizková L., Mucaji P., Kontseková Z., Sersen F., Krajcovic J.Molecules. 2009; 14:509–518.
(46). Vilela F. C., Padilha-Mde M., Alves-da-Silva G., Soncini R., Giusti-Paiva A. J.Med. Food. 2010; 13:219–222.
(47). Choi S. M., Kim B. C., Cho Y. H., Choi K. H., Chang J., Park M. S., Kim M. K., Cho K. H., Kim J. K.Chonnam Med. J. 2014; 50:45–51.
(48). Salqueiro J. B., Ardenghi P., Dias M., Ferreira M. B. C., Izquierdo I., Medina J. H.Pharmacol. Biochem. Behav. 1997; 58:887–891.
(49). Patil S. P., Jain P. D., Sancheti J. S., Ghumatkar P. J., Tambe R., Sathaye S.Neuropharmacolgy. 2014; 86:192–202.
(50). Ha S. K., Moon E., Lee P., Ryu J. H., Oh M. S., Kim S. Y.Neurochem. Res. 2012; 37:1560–1567.
(51). Watanabe K., Kanno S., Tomizawa A., Yomogida S., Ishikawa M.Oncol. Rep. 2012; 27:204–209.
(52). Fan S. Y., Zeng H. W., Pei Y. H., Li L., Ye J., Pan Y. X., Zhang J. G., Yuan X., Zhang W. D. J.Ethnopharmacol. 2012; 141:647–652.
(53). Calderone V., Chericoni S., Martinelli C., Testai L., Nardi A., Morelli I., Breschi M. C., Martinotti E.Naunyn Schmiedebergs Arch. Pharmacol. 2004; 370:290–298.
(54). Kim H. R., Park C. G., Jung J. Y.Int. J. Mol. Med. 2014; 33:317–324.
(55). Lim H., Son K. H., Chang H. W., Bae K., Kang S. S., Kim H. P.Biol. Pharm. Bull. 2008; 31:2063–2067.
(56). Yoo Y. M., Nam J. H., Kim M. Y., Choi J., Park H. J.Biol Pharm Bull. 2008; 31:760–764.
(57). Juckmeta T., Thongdeeying P., Itharat A.Evid. Based Complement. Alternat. Med. 2014; 2014:828760.
(58). Bors W., Heller W., Michael C., Saran M.Adv. Exp. Med. Biol. 1990; 264:165–170.
(59). Quiñones M., Miguel M., Aleixandre A.Pharmacol. Res. 2013; 68:125–131.
(60). Iwai K., Kishimoto N., Kakino Y., Mochida K., Fujita T. J.Agric. Food Chem. 2004; 52:4893–4898.
Table 1.
Table 2.
Standard compound | tR (min) | Linear regressiona | R2b | LODc (µg/ml) | LOQd (µg/ml) |
---|---|---|---|---|---|
Chlorogenic acid | 8.32 | y = 166.80 x + 58.46 | 0.9998 | 0.30 | 1.01 |
Caffeic acid | 10.36 | y = 253.42 x + 50.84 | 0.9999 | 0.22 | 0.72 |
Saxifragin | 14.78 | y = 414.62 x + 65.93 | 0.9998 | 0.12 | 0.40 |
Luteolin 7-rutinoside | 15.63 | y = 175.25 x + 34.55 | 0.9999 | 0.38 | 1.26 |
Rutin | 16.13 | y = 143.53 x + 15.18 | 0.9999 | 0.42 | 1.39 |
Luteolin 7-glucoside | 16.29 | y = 200.82 x + 40.73 | 0.9999 | 0.34 | 1.13 |
Hyperoside | 16.37 | y = 217.04 x + 46.33 | 0.9999 | 0.14 | 0.46 |
Luteolin 7-glucuronide | 16.63 | y = 48.813 x + 95.76 | 0.9997 | 0.85 | 2.83 |
Isoquercitrin | 16.76 | y = 472.75 x + 75.62 | 0.9999 | 0.11 | 0.36 |
3,5-dicaffeoylquinic acid | 16.95 | y = 157.87 x + 75.02 | 0.9999 | 0.27 | 0.90 |
Isorhoifolin | 18.09 | y = 232.85 x + 65.10 | 0.9999 | 0.17 | 0.57 |
Acacetintrisaccharide | 18.42 | y = 104.76 x + 81.54 | 0.9999 | 0.30 | 1.01 |
Kaempferol 3-rutinoside | 18.71 | y = 236.19 x + 54.25 | 0.9998 | 0.22 | 0.72 |
3,4-dicaffeoylquinic acid | 18.95 | y = 133.62 x + 45.50 | 0.9999 | 0.23 | 0.76 |
Diosmin | 19.10 | y = 244.78 x + 53.54 | 0.9999 | 0.21 | 0.71 |
Caffeic acid methyl ester | 19.68 | y = 172.39 x + 44.58 | 0.9999 | 0.12 | 0.40 |
Quercetin | 24.79 | y = 659.28 x + 87.33 | 0.9999 | 0.09 | 0.23 |
Linarin | 24.85 | y = 309.18 x + 30.86 | 0.9999 | 0.23 | 0.76 |
Luteolin | 25.26 | y = 399.22 x + 164.9 | 0.9997 | 0.25 | 0.83 |
Pectolinarin | 25.58 | y = 103.76 x + 60.10 | 0.9997 | 0.43 | 1.44 |
Apigenin | 28.67 | y = 529.46 x + 49.28 | 0.9999 | 0.11 | 0.35 |
Diosmetin | 29.53 | y = 741.76 x + 96.14 | 0.9999 | 0.01 | 0.04 |
Acacetin | 36.88 | y = 369.27 x + 45.71 | 0.9999 | 0.15 | 0.50 |
Pectolinarigenin | 37.73 | y = 199.06 x + 33.37 | 0.9999 | 0.20 | 0.67 |