Journal List > Nat Prod Sci > v.21(4) > 1060598

Yang, Nam, and Kang: Two New Scalaranes from a Korean Marine Sponge Spongia sp.

Abstract

Intensive chemical investigation of Korean marine sponge Spongia sp. has led to the isolation of two new scalaranes. The planar structures of the new compounds 1 and 2 were determined through 1D and 2D NMR spectral data analysis, while the relative stereochemistry of the compounds was determined based on the analysis of 1H-1H coupling constants and NOESY spectroscopic data. Compounds 1 and 2 did not display any significant biological activities on farnesoid X-activated receptor (FXR) in co-transfection assay.

REFERENCES

(1). Fattorusso E., Gerwick W. H., Taglialatela-Scafati O.Handbook of Marine Natural Products. Springer;New York: 2012. p. 4.
(2). Wang L., Yang B., Lin X. P., Zhou X. F., Liu Y.Nat. Prod. Rep. 2013; 30:455–473.
(3). González M. A.Curr. Bioact. Compd. 2010; 6:178–206.
(4). Fattorusso E., Magno S., Santacroce C., Sica D.Tetrahedron. 1972; 28:5993–5997.
(5a). Harinantenaina L., Brodie P. J., Maharavo J., Bakary G., TenDyke K., Shen Y., Kingston D. G.Bioorg. Med. Chem. 2013; 21:2912–2917.
(5b). Hassan M. H. A., Rateb M. E., Hetta M., Abdelaziz T. A., Sleim M. A., Jaspars M., Mohammed R.Tetrahedron. 2015; 71:577–583.
(5c). Yong K. W., Mudianta I. W., Cheney K. L., Mollo E., Blanchfield J. T., Garson M. J. J.Nat. Prod. 2015; 78:421–430.
(6a). Cimino G., De Rosa S., De Stefano S., Sodano G.Comp. Biochem. Phys. B. 1982; 73:471–474.
(6b). Rogers S. D., Paul V. J.Mar. Ecol. Prog. Ser. 1991; 77:221–232.
(6c). Avila C., Paul V. J.Mar. Ecol. Prog. Ser. 1997; 150:171–180.
(6d). Walker R. P., Thompson J. E., Faulkner D. J.J. Org. Chem. 1980; 45:4976–4979.
(6e). Thompson J. E., Walker R. P., Faulkner D. J.Mar. Biol. 1985; 88:11–21.
(7). Sera Y., Adachi K., Shizuri Y. J.Nat. Prod. 1999; 62:152–154.
(8a). Diyabalanage T., Ratnayake R., Bokesch H. R., Ransom T. T., Henrich C. J., Beutler J. A., McMahon J. B., Gustafson K. R.J. Nat. Prod. 2012; 75:1490–1494.
(8b). Cao F., Wu Z. H., Shao C. L., Pang S., Liang X. Y., de Voogd N. J., Wang C. Y.Org. Biomol. Chem. 2015; 13:4016–4024.
(9). Chang Y. C., Tseng S. W., Liu L. L., Chou Y., Ho Y. S., Lu M. C., Su J. H.Mar. Drugs. 2012; 10:987–997.
(10). Mo S., Krunic A., Pegan S. D., Franzblau S. G., Orjala J. J.Nat. Prod. 2009; 72:2043–2045.
(11). Marshall L. A., Winkler J. D., Griswold D. E., Bolognese B., Roshak A., Sung C. M., Webb E. F., Jacobs R. J.Pharmacol. Exp. Ther. 1994; 268:709–717.
(12). Festa C., Cassiano C., D'Auria M. V., Debitus C., Monti M. C., De Marino S.Org. Biomol. Chem. 2014; 12:8646–8655.
(13). Abdjul D. B., Yamazaki H., Takahashi O., Kirikoshi R., Mangindaan R. E., Namikoshi M.Bioorg. Med. Chem. Lett. 2015; 25:904–907.
(14). Putra M. Y., Bavestrello G., Cerrano C., Renga B., D'Amore C., Fiorucci S., Fattorusso E., Taglialatela-Scafati O.Steroids. 2012; 77:433–440.
(15a). Jeon J. E., Bae J., Lee K. J., Oh K. B., Shin J.J. Nat. Prod. 2011; 74:847–851.
(15b). Lee Y. J., Lee J. W., Lee D. G., Lee H. S., Kang J. S., Yun J.Int. J. Mol. Sci. 2014; 15:20045–20053.
(16a). Nam S. J., Ko H., Shin M., Ham J., Chin J., Kim Y., Kim H., Shin K., Choi H., Kang H.Bioorg. Med. Chem. Lett. 2006; 16:5398–5402.
(16b). Nam S. J., Ko H., Ju M. K., Hwang H., Chin J., Ham J., Lee B., Lee J., Won D. H., Choi H., Ko J., Shin K., Oh T., Kim S., Rho J. R., Kang H. J.Nat. Prod. 2007; 70:1691–1695.
(16c). Hahn D., Won D. H., Mun B., Kim H., Han C., Wang W., Chun T., Park S., Yoon D., Choi H., Nam S. J., Ekins M., Chin J., Kang H.Bioorg. Med. Chem. Lett. 2013; 23:2336–2339.

Fig. 1.
Chemical structures of 1 and 2.
nps-21-289f1.tif
Fig. 2.
Key COSY and HMBC correlations of 1.
nps-21-289f2.tif
Table 1.
1H and 13C NMR data of 1 and 2 in CDCl3.
1a 2b
No. δC, mc δH, m, J (Hz) COSY HMBC δC, mc δH, m, J (Hz)
1 40.1, CH2 0.79, m 2 3, 23 40.4, CH2 0.76, m
1.67, m 1.67, m
2 18.8, CH2 1.51, m 1, 3 18.7, CH2 1.38, m
1.55, m 1.48, m
3 42.2, CH2 1.13, dt (9.4, 3.7) 2 5 42.2, CH2 1.15, m
1.39, m 1.38, m
4 33.5, C 33.4, C
5 56.6, CH 0.78, m 56.5, CH 0.76, m
6 18.2, CH2 1.40, m 18.2, CH2 1.33, m
1.51, m 1.48, m
7 41.8, CH2 0.96, dt (13.2, 3.5) 5, 9, 24 41.8, CH2 0.89, m
1.69, d (10.2) 1.69, m
8 37.8, C 37.3, C
9 61.4, CH 0.85, m 58.5, CH 0.83, m
10 37.8, C 37.3, C
11 17.3, CH2 1.42, m 8 26.9, CH2 1.43, m
1.55, m 1.69, m
12 40.7, CH2 1.40, m 9, 18, 25 76.2, CH 3.56, dd (11.8, 4.2)
1.78, d (9.8)
13 37.8, C 44.0, C
14 54.7, CH 1.30, m 15 24, 25 47.7, CH 1.33, m
15 24.2, CH2 2.07, m 14, 16 16, 17 25.9, CH2 2.21, d (11.4)
2.31, dd (20.4, 4.0) 2.36, dt (20.2, 5.2)
16 136.6, CH 6.84, d (3.3) 15, 18 18, 20 143.1, CH 7.28, m
17 127.0, C 125.8, C
18 57.9, CH 2.47, m 19 57.8, CH 3.58, s
19 105.6, CH 5.20, d (5.8) 18 19-OMe 204.0, CH 9.86, d (3.6)
20 171.0, C 167.0, C
21 21.5, CH3 0.78, s 22 21.4, CH3 0.77, s
22 33.5, CH3 0.84, s 21 33.4, CH3 0.84, s
23 16.5, CH3 0.84, s 17.0, CH3 0.88, s
24 16.6, CH3 0.91, s 16.8, CH3 0.89, s
25 15.5, CH3 0.76, s 16.0, CH3 0.90, s
19-OMe 57.9, CH3 3.56, s
20-OMe 52.1, CH3 3.70, s

a 600 MHz for 1H NMR and 150 MHz for 13C NMR.

b 500 MHz for 1H NMR and 125 MHz for 13C NMR

c Multiplicity was determined by the analysis of 2D NMR spectroscopic data.

TOOLS
Similar articles