Journal List > Nat Prod Sci > v.21(4) > 1060593

Shaikh, Elfeki, Landolfa, Tanouye, J.Green, and Murphy: Deuteromethylactin B from a Freshwater-derived Streptomyces sp.

Abstract

Compared to their terrestrial and marine counterparts, little is known about the capacity of freshwater-derived actinomycete bacteria to produce novel secondary metabolites. In the current study, we highlight the disparities that exist between cultivation-independent and -dependent analyses of actinomycete communities from four locations in Lake Michigan sediment. Furthermore, through phylogenetic analysis of strains isolated from these locations, we identified a Streptomyces sp., strain B025, as being distinct from other Streptomyces spp. isolated from sediment. Upon fermentation this strain produced a rare class of eight-membered lactone secondary metabolites, which have been for their antitumor properties. We used spectroscopic and chemical derivitization techniques to characterize octalactin B (1) in addition to its corresponding novel, unnatural degradation product (2).

REFERENCES

(1). Newman D. J., Cragg G. M. J.Nat. Prod. 2012; 75:311–335.
(2). Fenical W., Jensen P. R.Nat. Chem. Biol. 2006; 2:666–673.
(3). Gerwick W. H., Moore B. S.Chem. Biol. 2012; 19:85–98.
(4). Mullowney M. W., Hwang C. H., Newsome A. G., Wei X., Tanouye U., Wan B., Carlson S., Barranis N. J., ÓhAinmhire E., Chen W. L., Krishnamoorthy K., White J., Blair R., Lee H., Burdette J. E., Rathod P. K., Parish T., Cho S., Franzblau S. G., Murphy B. T.ACS Infect. Dis. 2015; 1:168–174.
(5). Carlson S., Tanouye U., Omarsdottir S., Murphy B. T. J.Nat. Prod. 2015; 78:381–387.
(6). Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Huntley J., Fierer N., Owens S. M., Betley J., Fraser L., Bauer M., Gormley N., Gilbert J. A., Smith G., Knight R.ISME J. 2012; 6:1621–1624.
(7). Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., Fierer N., Peña A. G., Goodrich J. K., Gordon J. I., Huttley G. A., Kelley S. T., Knights D., Koenig J. E., Ley R. E., Lozupone C. A., McDonald D., Muegge B. D., Pirrung M., Reeder J., Sevinsky J. R., Turnbaugh P. J., Walters W. A., Widmann J., Yatsunenko T., Zaneveld J., Knight R.Nat. Methods. 2010; 7:335–336.
(8). Edgar R. C.Bioinformatics. 2010; 26:2460–2461.
(9). Gihring T. M., Green S. J., Schadt C. W.Environ. Microbiol. 2012; 14:285–290.
(10). McDonald D., Price M. N., Goodrich J., Nawrocki E. P., DeSantis T. Z., Probst A., Andersen G. L., Knight R., Hugenholtz P.ISME J. 2012; 6:610–618.
(11). Wang Q., Garrity G. M., Tiedje J. M., Cole J. R.Appl. Environ. Microbiol. 2007; 73:5261–5267.
(12). Clarke K. R.Aust. J. Ecol. 1993; 18:117–143.
(13). Green S. J., Prakash O., Jasrotia P., Overholt W. A., Cardenas E., Hubbard D., Tiedje J. M., Watson D. B., Schadt C. W., Brooks S. C., Kostka J. E.Appl. Environ. Microbiol. 2012; 78:1039–1047.
(14). DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L.Appl. Environ. Microbiol. 2006; 72:5069–5072.
(15). Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S., Jobb G., Forster W., Brettske I., Gerber S., Ginhart A. W., Gross O., Grumann S., Hermann S., Jost R., Konig A., Liss T., Lüssmann R., May M., Nonhoff B., Reichel B., Strehlow R., Stamatakis A., Stuckmann N., Vilbig A., Lenke M., Ludwig T., Bode A., Schleifer K. H.Nucleic Acids Res. 2004; 32:1363–1371.
(16). Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.Mol. Biol. Evol. 2011; 28:2731–2739.
(17). Ronquist F., Huelsenbeck J. P.Bioinformatics. 2003; 19:1572–1574.
(18). Jensen P. R., Moore B. S., Fenical W.Nat. Prod. Rep. 2015; 32:738–751.
(19). Newton R. J., Jones S. E., Eiler A., McMahon K. D., Bertilsson S.Microbiol. Mol. Biol. Rev. 2011; 75:14–49.
(20). Glöckner F. O., Zaichikov E., Belkova N., Denissova L., Pernthaler J., Pernthaler A., Amann R.Appl. Environ. Microbiol. 2000; 66:5053–5065.
(21). Zwart G., Crump B. C., Kamst-van Agterveld M. P. K. V., Hagen F., Han S. K.Aquat. Microb. Ecol. 2002; 28:141–155.
(22). Warnecke F., Amann R., Pernthaler J.Environ. Microbiol. 2004; 6:242–253.
(23). Newton R. J., Jones S. E., Helmus M. R., McMahon K. D.Appl. Environ. Microbiol. 2007; 73:7169–7176.
(24). Hahn M. W., Lünsdorf H., Wu Q., Schauer M., Höfle M. G., Boenigk J., Stadler P.Appl. Environ. Microbiol. 2003; 69:1442–1451.
(25). Hahn M. W.Int. J. Syst. Evol. Microbiol. 2009; 59:112–117.
crossref
(26). Tapiolas D. M., Roman M., Fenical W., Stout T. J., Clardy J. J.Am. Chem. Soc. 1991; 113:4682–4683.
(27). Dinh M. T., Bouzbouz S., Péglion J. L., Cossy J.Tetrahedron. 2008; 64:5703–5710.
(28). O'Sullivan P. T., Buhr W., Fuhry M. A. M., Harrison J. R., Davies J. E., Feeder N., Marshall D. R., Burton J. W., Holmes A. B. J.Am. Chem. Soc. 2004; 126:2194–2207.
(29). Shiina I., Hashizume M., Yamai Y. S., Oshiumi H., Shimazaki T., Takasuna Y. J., Ibuka R.Chemistry. 2005; 11:6601–6608.
(30). Dinh M. T., BouzBouz S., Peglion J. L., Cossy J.Synlett. 2005; 18:2851–2853.
(31). Shiina I., Oshiumi H., Hashizume M., Yamai Y. S., Ibuka R.Tetrahedron Lett. 2004; 45:543–547.
(32). Radosevich A. T., Chan V. S., Shih H. W., Toste F. D.Angew. Chem. Int. Ed Engl. 2008; 47:3755–3758.
(33). Hoye T. R., Jeffrey C. S., Shao F.Nat. Protoc. 2007; 2:2451–2458.
(34). Sullivan G. R., Dale J. A., Mosher H. S. J.Org. Chem. 1973; 38:2143–2147.
(35). Lee J. Y., Lee J. Y., Jung H. W., Hwang B. K.Int. J. Syst. Evol. Microbiol. 2005; 55:257–262.

Fig. 1.
Composition of bacterial community in collected Lake Michigan sediment.
nps-21-261f1.tif
Fig. 2.
Phylogenetic analysis of cultivatable actinomycete strains from Lake Michigan.
nps-21-261f2.tif
Fig. 3.
Structure of octalactin B (1), and deuteromethylactin B (2).
nps-21-261f3.tif
Fig. 4.
CD Spectrum of 1.
nps-21-261f4.tif
Fig. 5.
Key 2D NMR correlations of 2.
nps-21-261f5.tif
Table 1.
1H and 13C NMR data of 2.
Position 13Ca,b 13Ca,c 1H mult. (J, Hz)b,d
-OCD3 49.0 52.0
1 173.9 174.2
2 39.8 38.1 2.36 dd (15.1, 9.4)
2.51 dd (15.1, 3.4)
3 73.4 72.7 3.88 ddd (9.4, 5.2, 3.4)
4 39.9 38.3 1.55 m
5 28.9 28.6 1.32 m, 1.54 m
6 32.5 32.7 1.32 m, 1.48 m
7 74.7 74.6 3.74 ddd (3.0, 7.3, 8.0)
8 46.2 43.4 3.46 p (7.3)
9 207.7 207.6
10 139.4 138.5
11 142.5 141.2 6.91 t (7.2)
12 35.2 34.1 2.48 m
2.40 dd (16.0, 7.2)
13 76.7 76.0 3.49 m
14 35.0 34.1 1.70 m
15 19.3 18.9 0.96 d (7.0)
16 15.4 15.3 0.90 d (6.7)
17 14.8 16.3 1.02 d (7.3)
18 11.9 11.7 1.79 s
19 18.0 17.6 0.97 d (7.0)

a 226.2 MHz;

b experiment performed in CD3 OD;

c experiment performed in CDCl3;

d 600 MHz. s = singlet; d = doublet; t = triplet; p = pentet; dd = doublet of doublets; ddd = doublet of doublet of doublets; m = multiplet.

TOOLS
Similar articles