Journal List > Nat Prod Sci > v.21(4) > 1060592

Fukuda, Nagai, Kurihara, Kanamoto, and Tomoda: Graphiumins I and J, New Thiodiketopiperazines from the Marine-derived Fungus Graphium sp. OPMF00224

Abstract

Two new thiodiketopiperazines (TDKPs), designated graphiumins I (1) and J (2), were isolated from the culture broth of the marine-derived fungus Graphium sp. OPMF00224 by solvent extraction, silica gel column chromatography, and HPLC. Their absolute structures were elucidated by spectroscopic analyses (1D and 2D NMR data, ROESY correlations, and CD data) and chemical methods. They were found to be structurally rare TDKPs with a phenylalanine-derived indolin substructure. Compounds 1 and 2 inhibited yellow pigment production by methicillin-resistant Staphylococcus aureus (MRSA) with IC50 values of 63.5 and 76.5 µg/ml, respectively, without inhibiting its growth, even at 250 µ g/ml.

REFERENCES

(1). Centers for Disease Control and Prevention (CDC). MMWR Morb. Mortal. Wkly. Rep. 1997; 46:765–766.
(2). Hiramatsu K., Hanaki H., Ino T., Yabuta K., Oguri T., Tenover F. C. J.Antimicrob. Chemother. 1997; 40:135–136.
(3). Marshall J. H., Wilmoth G. J. J.Bacteriol. 1981; 147:900–913.
(4). Marshall J. H., Wilmoth G. J. J.Bacteriol. 1981; 147:914–919.
(5). Clauditz A., Resch A., Wieland K. P., Peschel A., Götz F.Infect. Immun. 2006; 74:4950–4953.
(6). Liu G. Y., Essex A., Buchanan J. T., Datta V., Hoffman H. M., Bastian J. F., Fierer J., Nizet V. J.Exp. Med. 2005; 202:209–215.
(7). Liu C. I., Liu G. Y., Song Y., Yin F., Hensler M. E., Jeng W. Y., Nizet V., Wang A. H., Oldfield E.Science. 2008; 319:1391–1394.
(8). Song Y., Liu C. I., Lin F. Y., No J. H., Hensler M. E., Liu Y. L., Jeng W. Y., Low J., Liu G. Y., Nizet V., Wang A. H., Oldfield E. J.Med. Chem. 2009; 52:3869–3880.
(9). Liu C. I., Jeng W. Y., Chang W. J., Ko T. P., Wang A. H. J.Biol. Chem. 2012; 287:18750–18757.
(10). Lee J. H., Cho H. S., Kim Y., Kim J. A., Banskota S., Cho M. H., Lee J.Appl. Microbiol. Biotechnol. 2013; 97:4543–4552.
(11). Lee J. H., Park J. H., Cho M. H., Lee J.Curr. Microbiol. 2012; 65:726–732.
(12). Sakai K., Koyama N., Fukuda T., Mori Y., Onaka H., Tomoda H.Biol. Pharm. Bull. 2012; 35:48–53.
(13). Fukuda T., Nagai K., Tomoda H. J.Nat. Prod. 2012; 75:2228–2231.
(14). Fukuda T., Shimoyama K., Nagamitsu T., Tomoda H. J.Antibiot. 2014; 67:445–450.
(15). Fukuda T., Shinkai M., Sasaki E., Nagai K., Kurihara Y., Kanamoto A., Tomoda H. J.Antibiot. 2015; DOI: doi: 10.1038/ja.2015.41.
(16). Wang J. M., Jiang N., Ma J., Yu S. S., Tan R. X., Dai J. G., Si Y. K., Ding G. Z., Ma S. G., Qu J., Fang L., Du D.Tetrahedron. 2013; 69:1195–1201.
(17). Nagai K., Doi T., Sekiguchi T., Namatame I., Sunazuka T., Tomoda H., Omura S., Takahashi T. J.Comb. Chem. 2006; 8:103–109.
(18). Hegde V. R., Dai P., Patel M., Das P. R., Puar M. S.Tetrahedron Lett. 1997; 38:911–914.
(19). Neuss N., Nagarajan R., Molloy B. B., Huckstep L. L.Tetrahedron Lett. 1968; 9:4467–4471.
(20). Guo C. J., Yeh H. H., Chiang Y. M., Sanchez J. F., Chang S. L., Bruno K. S., Wang C. C. J.Am. Chem. Soc. 2013; 135:7205–7213.

Fig. 1.
Structures of graphiumins I (1), J (2) and A (3).
nps-21-255f1.tif
Fig. 2.
1H-1H COSY (a), Key HMBC (a), NOE (b) correlations, and H-H coupling (c) of 1.
nps-21-255f2.tif
Fig. 3.
1H-1H COSY and Key HMBC correlations of 2.
nps-21-255f3.tif
Fig. 4.
Proposed biosynthetic pathway of graphiumins I (1) and J (2).
nps-21-255f4.tif
Table 1.
13C and 1H NMR spectroscopic data for graphiumins I (1) and J (2) in CDCl3
1 2
Position δCa δH mult (J in Hz)b δCa δH mult (J in Hz)b
1 160.4, s 169.2, s
2 75.7, s 69.9, s
3 34.2, t 4.15, dq (18.0, 1.0) 39.3, t 3.23, dt (17.0, 1.0)
3.10, dq (18.0, 1.5) 3.13, dt (17.0, 1.5)
4 113.1, s 108.9, s
5 139.7, d 6.69, q (2.0) 138.2, d 6.64, t (2.0)
6 141.6, d 6.35, dd (8.0, 2.0) 139.9, d 6.34, dd (8.0, 2.0)
7 105.0, d 4.61, dd (8.0, 1.5) 105.5, d 4.69, dd (8.0, 2.0)
8 69.9, d 5.86, dt (8.0, 1.5) 71.9, d 5.93, dt (8.5, 2.0)
9 63.0, d 5.18, dq (8.0, 1.5) 60.5, d 5.21, br d (8.5)
10
11 171.7, s 171.6, s
12 41.9, t 2.56, dd (17.0, 3.0) 42.1, t 2.56, dd (17.0, 3.0)
2.46, dd (17.0, 9.0) 2.47, dd (17.0, 9.0)
13 67.6, d 4.09, m 67.5, d 4.07, m
14 36.5, t 1.44, m 36.5, t 1.43, m
1.52, m 1.51, m
15 25.3, t 1.37, m 25.2, t 1.34, m
1.45, m 1.44, m
16 31.7, t 1.31, m 31.7, t 1.29, m
17 22.6, t 1.32, m 22.6, t 1.30, m
18 14.1, q 0.91, t (8.0) 14.0, q 0.89, t (8.0)
1' 162.8, s 164.3, s
2' 76.5, s 73.6, s
3' 35.6, t 4.32, br d (18.0) 39.9, t 3.74, d (17.0)
3.25 d (18.0) 3.44, d (17.0)
4' 128.1, s 131.4, s
5' 125.3, d 7.33, d (7.0) 116.2, d 6.82, d (7.0)
6' 125.9, d 7.21, t (7.0) 129.3, d 7.17, t (7.0)
7' 128.8, d 7.34, t (7.0) 118.4, d 6.92, d (7.0)
8' 115.8, s 7.93, d (7.0) 146.4, s
9' 138.1, s 126.7, s
2-SMe 15.1, q 2.36, s
2'-SMe 14.2, q 2.20, s
8'-OH 10.03, s
13-OH NDc NDc

a) Chemical shifts are shown with reference to CDCl3 as 77.0 ppm.

b) Chemical shifts are shown with reference to CDCl3 as 7.26 ppm.

c) ND: not detected

Table 2.
Summary of biological activities of graphiumins I (1) and J (2) against MRSA
Compound White zone (mm)a Growthb Y. P. prod.b,c
50 μ g 25 μ g (IC50 μ g/ml)
1 24 22 >250 63.5
2 23 20 >250 76.5
Citridone Ad 23 18 >30 11.1

a Paper disk method (8 mm disk).

b Liquid culture method.

c Y. P. prod.; Yellow pigment production.

d Positive control.15

TOOLS
Similar articles