Journal List > Perspect Nurs Sci > v.13(2) > 1060416

Cho, Ga, Kim, Kim, Kim, Kim, Kim, and Choi: Factors Influencing the Cognitive Degree of Dry Eyes in Nursing Students

Abstract

Purpose:

This study aimed to identify the factors that influence the cognitive degree of dry eyes in nursing students. Methods: This was a cross-sectional descriptive study. Data was collected using self-administered questionnaires (cognitive degree of dry eyes, Standard Patients Evaluation of Eye Dryness [SPEED] questionnaire, and McMonnies questionnaire) from 233 nursing students of E university. Results: The mean scores for the cognitive degree of dry eyes, SPEED, and McMonnies were 21.43, 8.02, and 6.39, respectively. The cognitive degree of dry eyes was found to have a significantly positive correlation with McMonnies and SPEED scores. Additionally, the factors that influenced the cognitive degree of dry eyes among nursing students were hours of using smart phones, McMonnies score, and the SPEED score. Conclusion: The results of this study indicate that interventions need to developed and applied to reduce and control the cognitive degree of dry eyes among nursing students.

REFERENCES

1.hira.or.kr [Internet]. Wonju: Health Insurance Review & Assessment Service;2014. Apr 16. Available from:. http://www.hira.or.kr/dummy.do?pgmid=HIRAA020041000000&cmsurl=/cms/inform/02/1324964_27116.html&subject.
2.Lemp MA. Report of the National Eye Institute/Industry Workshop on clinical trials in dry eyes. Eye Contact Lens. 1995. 21(4):221–32.
3.Park JS., Choi MJ., Ma JE., Moon JH., Moon HJ. Influence of cellular phone videos and games on dry eye syndrome in university students. J Korean Acad Community Health Nurs. 2014. 25(1):12–23. http://dx.doi.org/10.12799/jkachn.2014.25.1.12.
crossref
4.health.mw.go.kr [Internet]. Sejong: Ministry of Health & Welfare;2010. Jan 31 [updated 2013 November 12]. Available from:. http://health.mw.go.kr/HealthInfoArea/HealthInfo/View.do?idx=1050.
5.Kim JS., Cho KJ., Song JS. Influences of computer works on blink rate and ocular dryness in adolescents. J Korean Ophthalmol Soc. 2007. 48(11):1466–72.
crossref
6.Jung DI., Lim SK., Kim SR., Park M. The comparison of lens movement by the fitting states of soft contact lenses in normal and dry eyes. J Korean Ophthalmic Opt Soc. 2011. 16(1):21–30.
7.Lee SH. Evaluating the influence of smart phone use on the psycho-physiological condition [dissertation]. Seoul: Konkuk University;2011.
8.Nhis.kr [Internet]. Wonju: National Health Insurance;2013. March 26. Available from:. http://www.nhis.or.kr/bbs7/boards/B0039/2868.
9.Msip.go.kr [Internet]. Gwacheon: Ministry of Science, ICT and Future Planning;2013. Dec 30. Available from:. http://www.msip.go.kr/web/msipContents/contentsView.do?cateId=mssw312&artId=1211980.
10.Kim DI., Lee YH., Lee JY., Kim MC., Keum CM., Nam JE, et al. New patterns in media addiction: is smartphone a substitute or a complement to the internet? Korean J Youth Counsel. 2012. 20(1):71–88.
11.Yun CM., Kang SY., Kim HM., Song JS. Prevalence of dry eye disease among university students. J Korean Opthalmol Soc. 2012. 53(4):505–9. http://dx.doi.org/10.3341/jkos.2012.53.4.505.
crossref
12.Her S., Kim KH. Dry eye syndrome and ocular fatigue according to the status of contact lens wearing and management among female university students. J Korean Acad Community Health Nurs. 2014. 25(4):259–69. http://dx.doi.org/10.12799/jkachn.2014.25.4.259.
crossref
13.Bang KS., Jun MH., Kim HS., Son HM., Kang JH., Yu SJ, et al. Nursing students' awareness of nursing and future career. J Korean Acad Soc Nurs Edu. 2009. 15(1):22–31. http://dx.doi.org/10.5977/JKASNE.2009.15.1.022.
crossref
14.Azmoon H., Dehghan H., Akbari J., Souri S. The relationship between thermal comfort and light intensity with sleep quality and eye tiredness in shift work nurses. J Environ Public Health. 2013. 2013:639184. http://dx.doi.org/10.1155/2013/639184.
crossref
15.Kwon YK., Kim SR., Won JH. Study of VDT work environment for nurses in general hospital. J Korean Oper Res Manag Sci Soc. 2000. 1:577–80.
16.Kwon M., Kim SL. The job stress and presenteeism of occupational health nurses in workplace in Korea. Korean J Occup Health Nurs. 2010. 19(2):159–69.
17.Lemp MA., Foulks GN. The definition and classification of dry eye disease. Ocul Surf. 2007. 5(2):75–92.
18.Woo H., Moon BY., Cho HG. Ocular symptoms on VDT syndrome and symptoms-related factors. J Korean Ophthalmic Opt Soc. 2011. 16(3):351–6.
19.Park JS., Choi MJ., Ma JE., Moon JH., Moon HJ. Influence of cellular phone videos and games on dry eye syndrome in university students. J Korean Acad Community Health Nurs. 2014. 25(1):12–23. http://dx.doi.org/10.12799/jkachn.2014.25.1.12.
crossref
20.Ngo W., Situ P., Keir N., Korb D., Blackie C., Simpson T. Psychometric properties and validation of the standard patient evaluation of eye dryness questionnaire. Cornea. 2013. 2(9):1204–10. http://dx.doi.org/10.1097/ICO.0b013e318294b0c0.
crossref
21.McMonnies C., Ho A., Wakefield D. Optimum dry eye classification using questionnaire responses. Adv Exp Med Biol. 1998. 438:835–8.
crossref
22.Kim DH., Kim JS., Mun JH. The status of soft contact lens wear in college students in Korea. J Korean Opthalmic Opt Soc. 2004. 9(2):233–9.
23.Kim MJ., Hwang HK., Jang WY. The comparative analysis for the progression of dry eyes caused by wearing soft contact lenses (SCL) and cosmetic soft contact lenses (C-SCL). J Korean Ophthalmic Opt Soc. 2011. 16(4):375–81.
24.Choi HJ., Lee EJ. Mediation effects of self-efficacy between academic stress and college adjustment in first year nursing students. J Korean Acad Fundam Nurs. 2012. 19(2):261–8. http://dx.doi.org/10.7739/jkafn.2012.19.2.261.
crossref
25.Yeo S., Aung HT., Tong L. The association of dry eye symptoms with socioeconomic factors and quality of life. J Clin Res Ophthalmol. 2014. 1(1):006–13. http://dx.doi.org/10.17352/2455-1414.000002.
26.Asiedu K., Kyei S., Boampong F., Ocansey S. Symptomatic dry eye and Its associated factors: a study of university undergraduate students in ghana. Eye Contact Lens. 2016.http://dx.doi.org/10.1097/ICL.0000000000000256.
27.Uchino M., Schaumberg DA., Dogru M., Tsubota K. Prevalence of dry eye disease among Japanese visual display terminal users. Ophthalmol. 2008. 115(11):1982–8. http://dx.doi.org/10.1016/j.ophtha.2008.06.022.
crossref
28.Asiedu K., Kyei S., Mensah SN., Ocansey S., Abu LS., Kyere EA. Ocular surface disease index (OSDI) versus the standard patient evaluation of eye dryness (SPEED): a study of a nonclinical sample. Cornea. 2016. 35(2):175–80. http://dx.doi.org/10.1097/ICO.0000000000000712.
29.Rege A., Kulkarni V., Puthran N., Khandgave T. A clinical study of subtype-based prevalence of dry eye. J Clin Diagn Res. 2013. 7(10):2207–10. http://dx.doi.org/10.7860/JCDR/2013/6089.3472.
crossref

Table 1.
Characteristics of the Participants (N=233)
Characteristics Categories n (%) or M±SD Range
Gender Male 30 (12.8)  
Female 203 (87.1)  
Age (year)   21.58±1.57 19~27
Wearing lens Yes 116 (49.7)  
No 117 (50.2)  
Using smartphone Purpose of using Yes 232 (99.5)  
No SNS 1 (0.4) 123 (52.7)  
smartphone The others 110 (47.2)  
Hours of using smartphone <4 74 (31.7)  
≥4 159 (68.2)  
Using computer Yes 209 (89.7)  
No 24 (10.3)  
Purpose of using computer Studying 88 (37.7)  
The others 145 (62.2)  
Hours of using computer <1 138 (59.2)  
≥1 95 (40.7)  
Average of sleeping hours <6 97 (41.6)  
≥6 136 (58.3)  
Cognitive degree of dry eyes   21.43±7.51 10~50
s <21 111 (47.6)  
  ≥21 122 (52.3)  
SPEED   8.02±5.25 0~28
<6 84 (36.0)  
≥6 149 (63.9)  
McMonnies   6.39±3.81 0~37
<14.5 224 (96.1)  
≥14.5 9 (3.8)  

SPEED=Standard patients evaluation of eye dryness.

Table 2.
Cognitive Degree of Dry Eyes, SPEED and McMonnies of the Participants (N=233)
Variables 5 Likert scale Total score Prevalence Severity
M±SD Reported range M±SD Reported range n (%) n (%)
Cognitive degree of dry eyes 2.14±0.75 1~4 21.43±7.51 10~38 220 (94.4) 122 (52.3)
SPEED 1.00±0.66 0~4 8.02±5.25 0~26 221 (94.8) 149 (63.9)
McMonnies 0.53±0.31 0~2 6.39±3.81 0~21 220 (94.4) 9 (3.8)

SPEED=Standard patients evaluation of eye dryness;

Prevalence: Cognitive degree of dry eyes >20, SPEED >0, McMonnies >0;

Severity: Cognitive degree of dry eyes ≥40, SPEED ≥6, McMonnies ≥14.5.

Table 3.
Cognitive Degree of Dry Eyes depending on Characteristics of the Participants (N=233)
Characteristic Categories Cognitive degree of dry eyes
M±SD t p
Gender Male 16.73±6.73 -3.77 <.001
Female 22.12±7.38    
Wearing lenses Yes 23.55±7.09 4.46 <.001
No 19.32±7.34    
Purpose of using smartphone SNS 21.85±7.70 0.89 .370
The others 20.96±7.30    
Hours of using smartphone <4 19.26±7.85 -3.05 .002
≥4 22.44±7.15    
Using computer Yes 21.45±7.48 0.15 .880
No 21.21±8.09    
Purpose of using computer Studying 21.05±1.03 -0.60 .540
The others 21.66±7.80    
Hours of using computer <1 21.49±7.26 0.13 .890
≥1 21.35±7.89    
Average of sleeping hours <6 22.38±7.33 1.64 .100
≥6 20.75±7.58    
SPEED <6 15.38±5.18 -11.57 <.001
≥6 24.84±6.39    
McMonnies <14.5 21.16±7.43 -2.80 .010
≥14.5 28.22±6.37    

SPEED=Standard patients evaluation of eye dryness.

Table 4.
Correlations among Cognitive Degree of Dry Eyes, SPEED and McMonnies (N=233)
Variables Cognitive degree of dry eyes SPEED McMonnies
r (p) r (p) r (p)
Cognitive degree of dry eyes 1    
SPEED .736 (<.001) 1  
McMonnies .644 (<.001) .697 (<.001) 1

SPEED=Standard patients evaluation of eye dryness.

Table 5.
Influencing Factors on Cognitive Degree of Dry Eyes (N=233)
Variables B SE t p Tolerence VIF
Hours of using smartphone 1.53 0.69 2.21 .028 .979 1.02
SPEED 0.79 0.08 9.29 <.001 .513 1.94
McMonnies 0.48 0.11 4.11 <.001 .511 1.95
R2=.584, Adj. R2=.578, F=4.897, p=.028, Durbin-Watson=2.01

VIF=Variance inflation factor; SPEED=Standard patients evaluation of eye dryness.

TOOLS
Similar articles