Abstract
Thyroid tumors display an intriguing biological diversity from benign follicular adenomas to lethal anaplastic carcinomas. Thyroid tumorigenesis is becoming better understood. Benign follicular adenomas are frequently associated with mutation of the thyrotrophin receptor, G alpha s or RAS. Although confirmatory studies are necessary, the present knowledge concerning the similarity in gene expression profiling between follicular adenomas and follicular carcinomas supports the progression of adenoma to carcinoma sequence. Four major genetic aberrations in follicular cell-derived thyroid carcinomas such as papillary, follicular, and Hurthle cell carcinomas include mutations of BRAF or RAS, and chromosomal rearrangement of RET/papillary thyroid tumor or PAX8/peroxisome proliferator-activated receptor gamma. Differentiated thyroid carcinomas of follicular cell origin dedifferentate to poorly differentiated or anaplastic thyroid carcinomas through mutation of p53 and CTNNB1. Familial nonmedullary thyroid carcinomas are heterogenous in genetic profiling, but some genes have been investigated as candidates for causative genetic aberration. Ret mutations can cause medullary thyroid carcinomas. A genotype-phenotype relationship helps to decide prophylactic thyroidectomiesin family members of hereditary medullary carcinomas such as MENIIa or MENIIb. Primary thyroid lymphomasare closely related with Hashimoto's thyroiditis. Recent novel and promising findings include additional abnormalities in the regulation of microRNA expression, poly-morphisms associated with thyroid cancer susceptibility and epigenetic changes. A newly proposed fetal cell carcinogenesis hypothesis explains more about thyroid tumorigenesis than classical multi-step carcinogenesis model, but is not yet firmly supported by evidence. Future studies need to uncover new molecular mechanisms in thyroid tumorigenesis and to provide novel therapeutic targets for thyroid carcinomas
REFERENCES
1.Russo D., Arturi F., Wicker R., Chazenbalk GD., Schlumberger M., DuVillard JA, et al. Genetic alterations in thyroid hyperfunctioning adenomas. J Clin Endocrinol Metab. 1995. 80:1347–51.
2.Krohn K., Paschke R. Somatic mutations in thyroid nodular disease. Mol Genet Metab. 2002. 75:202–8.
3.Nikiforova MN., Nikiforov YE. Molecular diagnostics and predictors in thyroid cancer. Thyroid. 2009. 19:1–11.
5.Greco A., Borrello MG., Miranda C., Degl'innocenti D., Pierotti MA. Molecular pathology of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2009. 53:440–53.
7.Chiosea S., Nikiforova M., Zuo H., Ogilvie J., Gandhi M., Seethala RR, et al. A novel complex BRAF mutation detected in a solid variant of papillary thyroid carcinoma. Endocr Pathol. 2009. 20:122–6.
8.Ciampi R., Knauf JA., Kerler R., Gandhi M., Zhu Z., Nikiforova MN, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005. 115:94–101.
9.Knauf JA., Ma X., Smith EP., Zhang L., Mitsutake N., Liao XH, et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 2005. 65:4238–45.
10.Nikiforova MN., Kimura ET., Gandhi M., Biddinger PW., Knauf JA., Basolo F, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Endocrinol Metab. 2003. 88:5399–404.
11.Xing M., Westra WH., Tufano RP., Cohen Y., Rosenbaum E., Rhoden KJ, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005. 90:6373–9.
12.Fusco A., Grieco M., Santoro M., Berlingieri MT., Pilotti S., Pierotti MA, et al. A new oncogene in human papillary carcinomas and their lymph nodal metastases. Nature. 1987. 328:170–2.
13.Grieco M., Santoro M., Berlingieri MT., Melillo RM., Donghi R., Bongarzone I, et al. PTC is a novel rearranged form of the ret protooncogene and is frequently detected in vivo in human papillary thyroid carcinomas. Cell. 1990. 60:557–63.
14.Viglietto G., Chiappetta G., Martinez-Tello FJ., Fukunaga FH., Tallini G., Rigopoulou D, et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene. 1995. 11:1207–10.
15.Fischer AH., Bond JA., Taysavang P., Battles OE., Wynford-Thomas D. Papillary thyroid carcinoma oncogene (RET/PTC) alters the nuclear envelope and chromatin structure. Am J Pathol. 1998. 153:1443–50.
16.Jhiang SM., Sagartz JE., Tong Q., Parker-Thornburg J., Capen CC., Cho JY, et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 1996. 137:375–8.
17.Santoro M., Chiappetta G., Cerrato A., Salvatore D., Zhang L., Manzo G, et al. Development of thyroid papillary carcinomas secondary to tissue specific expression of the RET/PTC1 oncogene in transgene mice. Oncogene. 1996. 12:1821–6.
19.Adeniran AJ., Zhu Z., Gandhi M., Steward DL., Fidler JP., Giordano TJ, et al. Correlation between genetic alterations and microscopic features, clinical manifestations and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 2006. 30:216–22.
20.Nikiforov YE., Rowland JM., Bove KE., Monforte-Munoz H., Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997. 57.
21.Adeniran AJ., Zhu Z., Gandhi M., Steward DL., Fidler JP., Giordano TJ, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 2006. 30:216–22.
22.Capella G., Matias-Guiu X., Ampudia X., de Leiva A., Perucho M., Prat J. Ras oncogene mutations in thyroid tumors: Polymerase chain reaction restriction-fragment-length polymorphism analysis from paraffin embedded tissue. Diagn Mol Pathol. 1996. 5:45–52.
23.Di Cristofaro J., Marcy M., Vasko V., Sebag F., Fakhry N., Wynford-Thomas D, et al. Molecular genetic study comparing follicular variant versus classic papillary thyroid carcinomas: Association of N-ras mutation in codon 61 with follicular variant. Hum Pathol. 2006. 37:824–30.
24.Rabes HM., Demidchik EP., Sidorow JD., Lengfelder E., Beimfohr C., Hoelzel D, et al. Pattern of radiation induced RET and NTRK rearrangements in 191 post-Chernobyl papillary thyroid carcinomas: Biological, phenotypic and clinical implications. Clin Cancer Res. 2000. 6:1093–103.
25.Russell JP., Powell DJ., Cunnane M., Greco A., Portella G., Santoro M, et al. The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene. 2000. 19:5729–35.
27.Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004. 116:281–97.
28.Nikiforova MN., Chiosea SI., Nikiforov YE. MicroRNA expression profiles in thyroid tumors. Endocr Pathol. 2009. 20:85–91.
29.Nikiforova MN., Lynch RA., Biddinger PW., Alexander EK., Dorn GW 2nd., Tallini G, et al. RAS point mutations and PAX8- PPARg rearrangement in thyroid tumors: Evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003. 88:2318–26.
30.Schark C., Fulton N., Jacoby RF., Westbrook CA., Straus FH 2nd., Kaplan EL. N-ras 61 oncogene mutations in Hurthle cell tumors. Surgery. 1990. 108:994–9.
31.Kebebew E. Thyroid oncogenesis. Clark OH, editor. editor.Textbook of Endocrine Surgery. 2nd ed.Philadelphia: Elsevier Saunders;2005. p.289.
32.Pasca di Magliano M., Di Lauro R., Zannini M. Pax8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci U.S.A. 2000. 97:13144–9.
33.Wang T., Xu J., Yu X., Yang R., Han ZC. Peroxisome proliferator-activated receptor gamma in malignant diseases. Crit Rev Oncol Hematol. 2006. 58:1–14.
34.Kroll TG., Sarraf P., Pecciarini L., Chen CJ., Mueller E., Spiegelman BM, et al. PAX8- PPARg 1 fusion oncogene in human thyroid carcinoma. Science. 2000. 289:1357–60.
35.Nikiforova MN., Lynch RA., Biddinger PW., Alexander EK., Dorn GW 2nd., Tallini G, et al. RAS point mutations and PAX8- PPARg rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003. 88:2318–26.
36.Lui WO., Zeng L., Rehrmann V., Deshpande S., Tretiakova M., Kaplan EL, et al. CREB3L2-PPARg fusion mutation identifies a thyroid signaling pathway regulated by intramembrane proteolysis. Cancer Res. 2008. 68:7156–64.
37.Yin Y., Yuan H., Zeng X., Kopelovich L., Glazer RI. Inhibition of peroxisome proliferator-activated receptor gamma increases estrogen receptor-dependent tumor specification. Cancer Res. 2009. 69:687–94.
38.French CA., Alexander EK., Cibas ES., Nose V., Laguette J., Faquin W, et al. Genetic and biological subgroups of low stage follicular thyroid cancer. Am J Pathol. 2003. 162:1053–60.
39.Liaw D., Marsh DJ., Li J., Dahia PLM., Wang SI., Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997. 16:64–7.
40.Chen ML., Xu PZ., Peng XD., Chen WS., Guzman G., Yang X, et al. The deficiency of Akt1 is sufficient to suppress tumor development in PTEN+/−mice. Genes Dev. 2006. 20:1569–74.
41.Paes JE., Ringel MD. Dysregulation of the phosphatidylinositol 3-kinase pathway in thyroid neoplasia. Endocrinol Metab Clin North Am. 2008. 37:375–87.
42.Weber F., Teresi RE., Broelsch CE., Frilling A., Eng C. A limited set of human microRNAs is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab. 2006. 91:3584–91.
43.Sobrinho-Simões M., Máximo V., Castro IV., Fonseca E., Soares P., Garcia-Rostan G, et al. Hurthle (oncocytic) cell tumors of thyroid: Etiopathogenesis, diagnosis and clinical significance. Int J Surg Pathol. 2005. 13:29–35.
44.Máximo V., Soares P., Lima J., Cameselle-Teijeiro J., Sobrinho-Simões M. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNAvariants in human thyroid pathology: A study with emphasis on Hurthle cell tumors. Am J Pathol. 2002. 160:1857–65.
45.Máximo V., Botelho T., Capela J., Soares P., Lima J., Taveira A, et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br J Cancer. 2005. 92:1892–8.
46.Masood S., Auguste LJ., Westerband A., Belluco C., Valderama E., Attie J. Differential oncogenic expression in thyroid follicular and H-rthle cell carcinomas. Am J Surg. 1993. 166:366–8.
47.Sakamoto A., Kasai N., Sugano H. Poorly differentiated carcinoma of the thyroid. A clinicopathologic entity for a high risk group of papillary and follicular carcinomas. Cancer. 1983. 52:1849–55.
48.Santoro M., Papotti M., Chiappetta G., Garcia-Rostan G., Volante M., Johnson C, et al. RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab. 2002. 87:370–9.
49.Santarpia L., El-Naggar AK., Cote GJ., Myers JN., Sherman SI. Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J Clin Endocrinol Metab. 2008. 93:278–84.
50.Ito T., Seyama T., Mizuno T., Tsuyama N., Hayashi T., Hayashi Y, et al. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Research. 1992. 52:1369–71.
51.Garcia-Rostan G., Camp RL., Herrero A., Carcangiu ML., Rimm DL., Tallini G. Beta-catenin dysregulation in thyroid neoplasms: downregulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol. 2001. 158:987–96.
52.Ricarte-Filho JC., Ryder M., Chitale DA., Rivera M., Heguy A., Ladanyi M, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Research. 2009. 69:4885–93.
53.LaPerle KM., Jhiang SM., Capen C. Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas. Am J Pathol. 2000. 157:671–7.
54.Visone R., Pallante P., Vecchione A., Cirombella R., Ferracin M., Ferraro A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene. 2007. 26:7590–5.
55.Zhu H., Wu H., Liu X., Li B., Chen Y., Ren X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. 2009. 5:816–23.
56.Biunno I., Cattaneo M., Orlandi R., Canton C., Biagiotti L., Ferrero S, et al. SEL1L a multifaceted protein playing a role in tumor progression. J Cell Physiol. 2006. 208:23–38.
57.Kota J., Chivukula RR., O'Donnell KA., Wentzel EA., Montgomery CL., Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009. 137:1005–17.
58.Mitomo S., Maesawa C., Ogasawara S., Iwaya T., Shibazaki M., Yashima-Abo A, et al. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Science. 2008. 99:280–6.
59.Takakura S., Mitsutake N., Nakashima M., Namba H., Saenko VA., Rogounovitch TI, et al. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Science. 2008. 99:1147–54.
60.Hemminki K., Li X. Familial risk of cancer by site and histopathology. Int J Cancer. 2003. 103:105–9.
61.Foulkes WD., Kloos RT., Harach Hr. Familial non-medullary thyroid cancer. DeLellis RA, Lloyd RV, Heitz PU, Eng C, editors. editors.Pathology and Genetics of Tumours of Endocrine Organs. Lyon: IARC Press;2004. p. 257–61.
62.Lesueur F., Stark M., Tocco T., Ayadi H., Delisle MJ., Goldgar DE, et al. Genetic heterogeneity in familial nonmedullary thyroid carcinoma: exclusion of linkage to RET, MNG1, and TCO in 56 families. NMTC Consortium. J Clin Endocrinol Metab. 1999. 84:2157–62.
63.McKay JD., Lesueur F., Jonard L., Pastore A., Williamson J., Hoffman L, et al. Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21. Am J Hum Genet. 2001. 69:440–6.
64.Adjadj E., Schlumberger M., de Vathaire F. Germ-line DNA polymorphisms and susceptibility to differentiated thyroid cancer Lancet Oncol. 2009. 10:181–90.
65.Santoro M., Carlomagno F., Melillo RM., Fusco A. Dysfunction of the RET receptor in human cancer. Cell Mol Life Sci. 2004. 61:2954–64.
66.Kawai K., Iwashita T., Murakami H., Hiraiwa N., Yoshiki A., Kusakabe M, et al. Tissue specific carcinogenesis in transgenic mice expressing the RET protooncogene with a multiple endocrine neoplasia type 2A mutation. Cancer Res. 2000. 60:5254–60.
67.Wohllk N., Cote GJ., Bugalho MM., Ordonez N., Evans DB., Goepfert H, et al. Relevance of RET protooncogene mutations in sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab. 1996. 81:3740–5.
68.Ponder BAJ. Multiple endocrine neoplasia type 2. Scriver CR, Beaudet AL, Sly WS, editors. editors.The Metabolic and Molecular Basis of Inherited Disease. 8th ed.New York: McGraw-Hill;2001. p. 931–42.
69.Brandi ML., Gagel RF., Angeli A., Bilezikian JP., Beck-Peccoz P., Bordi C, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab. 2001. 86:5658–67.
70.Thieblemont C., Mayer A., Dumontet C., Barbier Y., Callet-Bauchu E., Felman P, et al. Primary thyroid lymphoma is a heterogeneous disease. J Clin Endocrinol Metab. 2002. 87:105–11.
71.Hyjek E., Isaacson P. Primary B-cell lymphoma of the thyroid and its relationship to Hashimoto's thyroiditis. Hum Pathol. 1988. 19:1315–26.