Journal List > Korean J Urogenit Tract Infect Inflamm > v.10(1) > 1059903

Ko and Song: Current Updates in Pharmacokinetics and Pharmacodynamics of Fluoroquinolones

Abstract

The ultimate goal of antimicrobial treatment is to decrease the morbidity and mortality related to infection. Maximizing these outcomes requires an understanding of the complex interactions between the drug administered, the host, and the infecting pathogen. Pharmacokinetics, which deals with the disposition of a drug in the body, focuses on such parameters as absorption, distribution, and elimination. Pharmacodynamics more specifically focuses on the interaction between the drug concentration at the site of action over time and the resulting antimicrobial effect. Use of quinolones has increased in vitro activity against several important pathogenic organisms as well as augmented pharmacokinetic parameters. These properties result in enhanced pharmacodynamic characteristics and should improve therapeutic outcomes against selected pathogens. In this article the pharmacokinetics and pharmacodynamic potential of these quinolones, particularly fluoroquinolones, is reviewed.

REFERENCES

1. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998; 26:1–10.
2. Mueller M, de la Peña A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: kill curves versus MIC. Antimicrob Agents Chemother. 2004; 48:369–77.
crossref
3. Andriole VT. The quinolones: past, present, and future. Clin Infect Dis. 2005; 41(Suppl 2):S113–9.
crossref
4. Ball P. Adverse drug reactions: implications for the development of fluoroquinolones. J Antimicrob Chemother. 2003; 51(Suppl 1):21–7.
crossref
5. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis. 2005; 41(Suppl 2):S120–6.
crossref
6. O'Donnell JA, Gelone SP. The newer fluoroquinolones. Infect Dis Clin North Am. 2004; 18:691–716.
7. Mehlhorn AJ, Brown DA. Safety concerns with fluoroquinolones. Ann Pharmacother. 2007; 41:1859–66.
crossref
8. Montay G, Bruno R, Vergniol JC, Ebmeier M, Le Roux Y, Guimart C, et al. Pharmacokinetics of sparfloxacin in humans after single oral administration at doses of 200, 400, 600, and 800 mg. J Clin Pharmacol. 1994; 34:1071–6.
crossref
9. Davis R, Bryson HM. Levofloxacin. A review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs. 1994; 47:677–700.
10. Nakashima M, Uematsu T, Kosuge K, Umemura K, Hakusui H, Tanaka M. Pharmacokinetics and tolerance of DU-6859a, a new fluoroquinolone, after single and multiple oral doses in healthy volunteers. Antimicrob Agents Chemother. 1995; 39:170–4.
crossref
11. Cohen KA, Lautenbach E, Weiner MG, Synnestvedt M, Gasink LB. Coadministration of oral levofloxacin with agents that impair absorption: impact on antibiotic resistance. Infect Control Hosp Epidemiol. 2008; 29:975–7.
crossref
12. Barton TD, Fishman NO, Weiner MG, LaRosa LA, Lautenbach E. High rate of coadministration of di- or tri-valent cation-containing compounds with oral fluoroquinolones: risk factors and potential implications. Infect Control Hosp Epidemiol. 2005; 26:93–9.
crossref
13. Teng R, Harris SC, Nix DE, Schentag JJ, Foulds G, Liston TE. Pharmacokinetics and safety of trovafloxacin (CP-99,219), a new quinolone antibiotic, following administration of single oral doses to healthy male volunteers. J Antimicrob Chemother. 1995; 36:385–94.
14. Child J, Andrews JM, Wise R. Pharmacokinetics and tissue penetration of the new fluoroquinolone grepafloxacin. Anti-microb Agents Chemother. 1995; 39:513–5.
crossref
15. Johnson JH, Cooper MA, Andrews JM, Wise R. Pharmacokinetics and inflammatory fluid penetration of sparfloxacin. Antimicrob Agents Chemother. 1992; 36:2444–6.
crossref
16. Child J, Mortiboy D, Andrews JM, Chow AT, Wise R. Open-label crossover study to determine pharmacokinetics and penetration of two dose regimens of levofloxacin into inflammatory fluid. Antimicrob Agents Chemother. 1995; 39:2749–51.
crossref
17. Tanimura H, Uchiyama K, Kashiwagi H. Gallbladder tissue concentrations, biliary excretion and pharmacokinetics of OPC-17116. Drugs. 1995; 49(Suppl 2):341–3.
crossref
18. Matsuda S. Clinical experience with OPC-17116 in the treatment of gynaecological infections and its penetration into gynaecological tissues. Japanese Collaborative Study Group of OPC-17116 in Gynaecology. Drugs. 1995; 49(Suppl 2):395–8.
19. Borner K, Borner E, Lode H. A metabolite of sparfloxacin in urine. Drugs. 1993; 45(Suppl 3):S303–4.
crossref
20. Radandt JM, Marchbanks CR, Dudley MN. Interactions of fluoroquinolones with other drugs: mechanisms, variability, clinical significance, and management. Clin Infect Dis. 1992; 14:272–84.
crossref
21. Tanaka M, Kurata T, Fujisawa C, Ohshima Y, Aoki H, Okazaki O, et al. Mechanistic study of inhibition of levofloxacin absorption by aluminum hydroxide. Antimicrob Agents Chemother. 1993; 37:2173–8.
crossref
22. Shiba K, Sakamoto M, Nakazawa Y, Sakai O. Effects of antacid on absorption and excretion of new quinolones. Drugs. 1995; 49(Suppl 2):360–1.
crossref
23. Flor S, Guay DR, Opsahl JA, Tack K, Matzke GR. Effects of magnesium-aluminum hydroxide and calcium carbonate antacids on bioavailability of ofloxacin. Antimicrob Agents Chemother. 1990; 34:2436–8.
crossref
24. Johnson RD, Wilson J, Dorr MB, Jensen BK, Talbot GH, Heald DL. The effect of sparfioxacin on the pharmacokinetics of theophylline at steady-state conditions. J Clin Pharmacol. 1995; 35:936.
25. Wispelwey B. Clinical implications of pharmacokinetics and pharmacodynamics of fluoroquinolones. Clin Infect Dis. 2005; 41(Suppl 2):S127–35.
crossref
26. Grant EM, Kuti JL, Nicolau DP, Nightingale C, Quintiliani R. Clinical efficacy and pharmacoeconomics of a continuous-infusion piperacillin-tazobactam program in a large community teaching hospital. Pharmacotherapy. 2002; 22:471–83.
crossref
27. Dandekar PK, Maglio D, Sutherland CA, Nightingale CH, Nicolau DP. Pharmacokinetics of meropenem 0.5 and 2 g every 8 hours as a 3-hour infusion. Pharmacotherapy. 2003; 23:988–91.
crossref
28. Ambrose PG, Bhavnani SM, Owens RC Jr. Clinical pharmacodynamics of quinolones. Infect Dis Clin North Am. 2003; 17:529–43.
crossref
29. Quintiliani R. Using pharmacodynamic and pharmacokinetic concepts to optimize treatment of infectious diseases. Infect Med. 2004; 21:219–32.
30. Stein GE. Pharmacokinetics and pharmacodynamics of newer fluoroquinolones. Clin Infect Dis. 1996; 23(Suppl 1):S19–24.
crossref
31. MacGowan AP, Rogers CA, Holt HA, Wootton M, Bowker KE. Pharmacodynamics of gemifloxacin against Streptococcus pneumoniae in an in vitro pharmacokinetic model of infection. Antimicrob Agents Chemother. 2001; 45:2916–21.

Fig. 1.
The core quinolone nucleus.
kjutii-10-1f1.tif
Table 1.
Pharmacokinetic properties of fluoroquinolones
Fluoroquinolone Oral dose (mg) tmax (h) Cmax (g/ml) t1/2 (h) AUC ([mg·h]/L)
Sparfloxacin 200 4.0 0.7 21.0 19.0
Levofloxacin 200 1.5 2.0 6.0 20.0
Grepafloxacin Trovafloxacin 200 200 2.1 0.7 0.7 2.9 11.0 7.8 8.8 24.0
Clinafloxacin 200 1.5 1.6 6.3 11.0

tmax: time after dosing for maximal concentration to be reached, Cmax: maximal serum concentration, t1/2 : elimination half-life, AUC: area under the serum concentration curve.

Table 2.
Inflammatory fluid penetration of fluoroquinolones
Parameter Grepafloxacin (400 mg) Levofloxacin (500 mg) Sparfloxacin (400 mg) Trovafloxacin (200 mg)
Serum        
 tmax (h) 2.0 1.2 2.7 0.75
 Cmax (g/ml) 1.5 6.6 1.6 2.9
 t1/2 (h) 5.2 8.0 18 7.8
 AUC ([mg·h]/L) 12 53 32 24
Blister fluid        
 tmax (h) 4.8 3.7 5.0 4.0
 Cmax (g/ml) 1.1 4.3 1.3 1.2
 t1/2 (h) 13 8.0 20 7.1
 AUC ([mg·h]/L) 22 54 37 15
Percentage penetration (blister fluid value/serum value)        
 Cmax 73 65 81 41
 AUC 180 100 117 63

tmax: time after dosing for maximal concentration to be reached, Cmax: maximal serum concentration, t1/2 : elimination half-life, AUC: area under the serum concentration curve.

Table 3.
Pharmacokinetic and pharmacodynamic parameters in antibiotic therapy
Parameters
Mechanism of bacterial killing
 Concentration-independent
 Concentration-dependent
Three parameters correlating with outcome
 T >MIC
 Cmax:MIC
 AUC:MIC

MIC: minimum inhibitory concentration, T >MIC: time that the drug concentration is above the MIC. Cmax: maximal serum concentration AUC: area under the serum concentration curve.

Table 4.
Pharmacodynamic parameters predictive of the outcome associated with various classes of antimicrobials
Parameter Class of antimicrobial
T >MIC Penicillin Cephalosporins
  Carbapenems
  Macrolides
Cmax:MIC Aminoglycosides
  Fluoroquinolones
AUC24:MIC Fluoroquinolones Azalides
  Ketolides

MIC: minimum inhibitory concentration, T >MIC: time above the MIC, Cmax: maximal serum concentration, AUC24: 24-h area under serum concentration curve.

TOOLS
Similar articles