Abstract
What makes a certain molecule to elicit allergic responses? It has been a long-running question in allergology and immunology. Molecular properties of allergens have been characterized for last 30 years. However, it has become evident that allergen alone cannot induce allergic reactions. The way of introduction to the immune system and adjuvant-like activity of concomitantly administered molecules are thought to be important. Physical properties which facilitate delivery may characterize inhalant allergens. Buoyant and sticky antigens with small molecular weight (10–50 kDa) may be carried by particles and remain airborne. Most allergens could be grouped into allergen families according to biochemical properties. Protease, lipid-binding/transfer protein, actin-binding protein, Ca-binding protein, α-amylase/trypsin inhibitor, and pectate lyase account for a significant number of allergens. Biochemical properties which enhance the activation of Th2-immune responses could be another characteristic of allergens. The protease activity of allergens can help break the skin barrier or mucus membrane and its penetration into the body. The capacity of allergen to carry immunologically active substances could increase the allergenicity. Lipid-binding ability is believed to play a role in this aspect. Danger signals, such as endotoxin, β-glucan, and chitin derived from the pathogens, commensals and from the environment can enhance the immune response to allergens. The known characteristics of food allergens are resistance to heat, acid, and digestive enzymes. However, food processing makes it more complex. Understanding the intrinsic properties of allergens may shed light on the mechanisms on the pathogenesis of allergic disorders and improve the diagnostic and therapeutic approaches.
Figures and Tables
Table 1
Table 2
Table 3
References
1. King TP, Hoffman D, Lowenstein H, Marsh DG, Platts-Mills TA, Thomas W. Allergen nomenclature. WHO/IUIS Allergen Nomenclature Subcommittee. Int Arch Allergy Immunol. 1994; 105:224–233.
3. Jeong KY, Park JW, Hong CS. House dust mite allergy in Korea: the most important inhalant allergen in current and future. Allergy Asthma Immunol Res. 2012; 4:313–325.
4. Gregory LG, Lloyd CM. Orchestrating house dust mite-associated allergy in the lung. Trends Immunol. 2011; 32:402–411.
5. Ferreira F, Wolf M, Wallner M. Molecular approach to allergy diagnosis and therapy. Yonsei Med J. 2014; 55:839–852.
6. Van Hoogstraten IM, Andersen KE, Von Blomberg BM, Boden D, Bruynzeel DP, Burrows D, et al. Reduced frequency of nickel allergy upon oral nickel contact at an early age. Clin Exp Immunol. 1991; 85:441–445.
7. Fox AT, Sasieni P, du Toit G, Syed H, Lack G. Household peanut consumption as a risk factor for the development of peanut allergy. J Allergy Clin Immunol. 2009; 123:417–423.
8. Shah R, Grammer LC. Chapter 1: an overview of allergens. Allergy Asthma Proc. 2012; 33:Suppl 1. S2–S5.
9. Tovey ER, Chapman MD, Platts-Mills TA. Mite faeces are a major source of house dust allergens. Nature. 1981; 289:592–593.
10. Platts-Mills TA, Woodfolk JA. Allergens and their role in the allergic immune response. Immunol Rev. 2011; 242:51–68.
11. Tovey ER, Chapman MD, Wells CW, Platts-Mills TA. The distribution of dust mite allergen in the houses of patients with asthma. Am Rev Respir Dis. 1981; 124:630–635.
12. Luczynska CM, Li Y, Chapman MD, Platts-Mills TA. Airborne concentrations and particle size distribution of allergen derived from domestic cats (Felis domesticus). Measurements using cascade impactor, liquid impinger, and a two-site monoclonal antibody assay for Fel d I. Am Rev Respir Dis. 1990; 141:361–367.
13. de Blay F, Heymann PW, Chapman MD, Platts-Mills TA. Airborne dust mite allergens: comparison of group II allergens with group I mite allergen and cat-allergen Fel d I. J Allergy Clin Immunol. 1991; 88:919–926.
14. Schrijvers R, Gilissen L, Chiriac AM, Demoly P. Pathogenesis and diagnosis of delayed-type drug hypersensitivity reactions, from bedside to bench and back. Clin Transl Allergy. 2015; 5:31.
16. Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bugel S, Nielsen J, et al. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol. 2013; 60:10–37.
17. Jimenez-Saiz R, Benede S, Molina E, Lopez-Exposito I. Effect of processing technologies on the allergenicity of food products. Crit Rev Food Sci Nutr. 2015; 55:1902–1917.
18. Schäppi GF, Suphioglu C, Taylor PE, Knox RB. Concentrations of the major birch tree allergen Bet v 1 in pollen and respirable fine particles in the atmosphere. J Allergy Clin Immunol. 1997; 100:656–661.
19. Custovic A, Green R, Fletcher A, Smith A, Pickering CA, Chapman MD, et al. Aerodynamic properties of the major dog allergen Can f 1: distribution in homes, concentration, and particle size of allergen in the air. Am J Respir Crit Care Med. 1997; 155:94–98.
20. Custovic A, Simpson A, Pahdi H, Green RM, Chapman MD, Woodcock A. Distribution, aerodynamic characteristics, and removal of the major cat allergen Fel d 1 in British homes. Thorax. 1998; 53:33–38.
21. Custovic A, Woodcock H, Craven M, Hassall R, Hadley E, Simpson A, et al. Dust mite allergens are carried on not only large particles. Pediatr Allergy Immunol. 1999; 10:258–260.
22. Platts-Mills JA, Custis NJ, Woodfolk JA, Platts-Mills TA. Airborne endotoxin in homes with domestic animals: implications for cat-specific tolerance. J Allergy Clin Immunol. 2005; 116:384–389.
23. Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008; 121:847–852.e7.
24. Ollert M, Blank S. Anaphylaxis to insect venom allergens: role of molecular diagnostics. Curr Allergy Asthma Rep. 2015; 15:26.
25. Jeong KY, Son M, Lee JY, Park KH, Lee JH, Park JW. Allergenic characterization of 27-kDa glycoprotein, a novel heat stable allergen, from the pupa of silkworm, Bombyx mori. J Korean Med Sci. 2016; 31:18–24.
26. Shakib F, Schulz O, Sewell H. A mite subversive: cleavage of CD23 and CD25 by Der p 1 enhances allergenicity. Immunol Today. 1998; 19:313–316.
27. Herbert CA, King CM, Ring PC, Holgate ST, Stewart GA, Thompson PJ, et al. Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1. Am J Respir Cell Mol Biol. 1995; 12:369–378.
28. Lee SE, Jeong SK, Lee SH. Protease and protease-activated receptor-2 signaling in the pathogenesis of atopic dermatitis. Yonsei Med J. 2010; 51:808–822.
29. Sokol CL, Barton GM, Farr AG, Medzhitov R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol. 2008; 9:310–318.
30. Smith PK, Harper JI. Serine proteases, their inhibitors and allergy. Allergy. 2006; 61:1441–1447.
31. Jeong KY, Son M, Lee JH, Hong CS, Park JW. Allergenic characterization of a novel allergen, homologous to chymotrypsin, from german cockroach. Allergy Asthma Immunol Res. 2015; 7:283–289.
33. Seutter von Loetzen C, Hoffmann T, Hartl MJ, Schweimer K, Schwab W, Rosch P, et al. Secret of the major birch pollen allergen Bet v 1: identification of the physiological ligand. Biochem J. 2014; 457:379–390.
34. Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS, Madan R, et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature. 2009; 457:585–588.
35. Herre J, Grönlund H, Brooks H, Hopkins L, Waggoner L, Murton B, et al. Allergens as immunomodulatory proteins: the cat dander protein Fel d 1 enhances TLR activation by lipid ligands. J Immunol. 2013; 191:1529–1535.
36. Egger M, Hauser M, Mari A, Ferreira F, Gadermaier G. The role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep. 2010; 10:326–335.
37. Onaderra M, Monsalve RI, Mancheno JM, Villalba M, Martinez del Pozo A, Gavilanes JG, et al. Food mustard allergen interaction with phospholipid vesicles. Eur J Biochem. 1994; 225:609–615.
38. Mirotti L, Florsheim E, Rundqvist L, Larsson G, Spinozzi F, Leite-de-Moraes M, et al. Lipids are required for the development of Brazil nut allergy: the role of mouse and human iNKT cells. Allergy. 2013; 68:74–83.
39. Jeong KY, Hong CS, Yong TS. Allergenic tropomyosins and their cross-reactivities. Protein Pept Lett. 2006; 13:835–845.
40. Usui M, Harada A, Ishimaru T, Sakumichi E, Saratani F, Sato-Minami C, et al. Contribution of structural reversibility to the heat stability of the tropomyosin shrimp allergen. Biosci Biotechnol Biochem. 2013; 77:948–953.
41. Ramos-Elorduy J. Anthropo-entomophagy: cultures, evolution and sustainability. Entomol Res. 2009; 39:271–288.
42. Richardson ML, Mitchell RF, Reagel PF, Hanks LM. Causes and consequences of cannibalism in noncarnivorous insects. Annu Rev Entomol. 2010; 55:39–53.
43. Jeong KY, Kim CR, Park J, Han IS, Park JW, Yong TS. Identification of novel allergenic components from German cockroach fecal extract by a proteomic approach. Int Arch Allergy Immunol. 2013; 161:315–324.
44. Jeong KY, Yum HY, Lee IY, Ree HI, Hong CS, Kim DS, et al. Molecular cloning and characterization of tropomyosin, a major allergen of Chironomus kiiensis, a dominant species of nonbiting midges in Korea. Clin Diagn Lab Immunol. 2004; 11:320–324.
45. Schluter K, Jockusch BM, Rothkegel M. Profilins as regulators of actin dynamics. Biochim Biophys Acta. 1997; 1359:97–109.
46. Goldschmidt-Clermont PJ, Kim JW, Machesky LM, Rhee SG, Pollard TD. Regulation of phospholipase C-gamma 1 by profilin and tyrosine phosphorylation. Science. 1991; 251:1231–1233.
47. Santos A, Van Ree R. Profilins: mimickers of allergy or relevant allergens. Int Arch Allergy Immunol. 2011; 155:191–204.
48. van Ree R, Voitenko V, van Leeuwen WA, Aalberse RC. Profilin is a cross-reactive allergen in pollen and vegetable foods. Int Arch Allergy Immunol. 1992; 98:97–104.
49. Ghunaim N, Gronlund H, Kronqvist M, Gronneberg R, Soderstrom L, Ahlstedt S, et al. Antibody profiles and self-reported symptoms to pollen-related food allergens in grass pollen-allergic patients from northern Europe. Allergy. 2005; 60:185–191.
50. Hoffmann-Sommergruber K, O'Riordain G, Ahorn H, Ebner C, Laimer Da Camara Machado M, Puhringer H, et al. Molecular characterization of Dau c 1, the Bet v 1 homologous protein from carrot and its cross-reactivity with Bet v 1 and Api g 1. Clin Exp Allergy. 1999; 29:840–847.
51. Jeong KY, Han IS, Choi SY, Lee JH, Lee JS, Hong CS, et al. Allergenicity of recombinant profilins from Japanese hop, Humulus japonicus. J Investig Allergol Clin Immunol. 2013; 23:345–350.
52. Fäh J, Wüthrich B, Vieths S. Anaphylactic reaction to lychee fruit: evidence for sensitization to profilin. Clin Exp Allergy. 1995; 25:1018–1023.
53. Feo F, Martinez J, Martinez A, Galindo PA, Cruz A, Garcia R, et al. Occupational allergy in saffron workers. Allergy. 1997; 52:633–641.
54. Valenta R, Hayek B, Seiberler S, Bugajska-Schretter A, Niederberger V, Twardosz A, et al. Calcium-binding allergens: from plants to man. Int Arch Allergy Immunol. 1998; 117:160–166.
55. Ledesma A, Barderas R, Westritschnig K, Quiralte J, Pascual CY, Valenta R, et al. A comparative analysis of the cross-reactivity in the polcalcin family including Syr v 3, a new member from lilac pollen. Allergy. 2006; 61:477–484.
56. Verdino P, Westritschnig K, Valenta R, Keller W. The cross-reactive calcium-binding pollen allergen, Phl p 7, reveals a novel dimer assembly. EMBO J. 2002; 21:5007–5016.
57. Hindley J, Wunschmann S, Satinover SM, Woodfolk JA, Chew FT, Chapman MD, et al. Bla g 6: a troponin C allergen from Blattella germanica with IgE binding calcium dependence. J Allergy Clin Immunol. 2006; 117:1389–1395.
58. Jeong KY, Kim CR, Un S, Yi MH, Lee IY, Park JW, et al. Allergenicity of recombinant troponin C from Tyrophagus putrescentiae. Int Arch Allergy Immunol. 2010; 151:207–213.
59. Hayek B, Vangelista L, Pastore A, Sperr WR, Valent P, Vrtala S, et al. Molecular and immunologic characterization of a highly cross-reactive two EF-hand calcium-binding alder pollen allergen, Aln g 4: structural basis for calcium-modulated IgE recognition. J Immunol. 1998; 161:7031–7039.
60. Niederberger V, Hayek B, Vrtala S, Laffer S, Twardosz A, Vangelista L, et al. Calcium-dependent immunoglobulin E recognition of the apo- and calcium-bound form of a cross-reactive two EF-hand timothy grass pollen allergen, Phl p 7. FASEB J. 1999; 13:843–856.
61. Elsayed S, Aas K. Characterization of a major allergen (cod). Observations on effect of denaturation on the allergenic activity. J Allergy. 1971; 47:283–291.
62. Van Do T, Elsayed S, Florvaag E, Hordvik I, Endresen C. Allergy to fish parvalbumins: studies on the cross-reactivity of allergens from 9 commonly consumed fish. J Allergy Clin Immunol. 2005; 116:1314–1320.
63. Aichberger KJ, Mittermann I, Reininger R, Seiberler S, Swoboda I, Spitzauer S, et al. Hom s 4, an IgE-reactive autoantigen belonging to a new subfamily of calcium-binding proteins, can induce Th cell type 1-mediated autoreactivity. J Immunol. 2005; 175:1286–1294.
64. Tatham AS, Shewry PR. Allergens to wheat and related cereals. Clin Exp Allergy. 2008; 38:1712–1726.
65. Breiteneder H, Radauer C. A classification of plant food allergens. J Allergy Clin Immunol. 2004; 113:821–830.
66. Gutierrez C, Garcia-Casado G, Sanchez-Monge R, Gomez L, Castanera P, Salcedo G. Three inhibitor types from wheat endosperm are differentially active against α-amylases of Lepidoptera pests. Entomol Exp Appl. 1993; 66:47–52.
67. Quirce S, Diaz-Perales A. Diagnosis and management of grain-induced asthma. Allergy Asthma Immunol Res. 2013; 5:348–356.
68. Marín-Rodríguez MC, Orchard J, Seymour GB. Pectate lyases, cell wall degradation and fruit softening. J Exp Bot. 2002; 53:2115–2119.
69. King TP, Norman PS, Tao N. Chemical modifications of the major allergen of ragweed pollen, antigen E. Immunochemistry. 1974; 11:83–92.
70. Wopfner N, Jahn-Schmid B, Schmidt G, Christ T, Hubinger G, Briza P, et al. The alpha and beta subchain of Amb a 1, the major ragweed-pollen allergen show divergent reactivity at the IgE and T-cell level. Mol Immunol. 2009; 46:2090–2097.
71. Pichler U, Hauser M, Wolf M, Bernardi ML, Gadermaier G, Weiss R, et al. Pectate lyase pollen allergens: sensitization profiles and cross-reactivity pattern. PLoS One. 2015; 10:e0120038.
72. Aalberse RC, Koshte V, Clemens JG. Immunoglobulin E antibodies that crossreact with vegetable foods, pollen, and Hymenoptera venom. J Allergy Clin Immunol. 1981; 68:356–364.
73. Altmann F. The role of protein glycosylation in allergy. Int Arch Allergy Immunol. 2007; 142:99–115.
74. van der Veen MJ, van Ree R, Aalberse RC, Akkerdaas J, Koppelman SJ, Jansen HM, et al. Poor biologic activity of cross-reactive IgE directed to carbohydrate determinants of glycoproteins. J Allergy Clin Immunol. 1997; 100:327–334.
75. Ishihara H, Takahashi N, Oguri S, Tejima S. Complete structure of the carbohydrate moiety of stem bromelain. An application of the almond glycopeptidase for structural studies of glycopeptides. J Biol Chem. 1979; 254:10715–10719.
76. Mari A. IgE to cross-reactive carbohydrate determinants: analysis of the distribution and appraisal of the in vivo and in vitro reactivity. Int Arch Allergy Immunol. 2002; 129:286–295.
77. van Ree R. Carbohydrate epitopes and their relevance for the diagnosis and treatment of allergic diseases. Int Arch Allergy Immunol. 2002; 129:189–197.
78. Focke M, Hemmer W, Hayek B, Gotz M, Jarisch R. Identification of allergens in oilseed rape (Brassica napus) pollen. Int Arch Allergy Immunol. 1998; 117:105–112.
79. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008; 358:1109–1117.
80. Commins SP, Satinover SM, Hosen J, Mozena J, Borish L, Lewis BD, et al. Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-alpha-1,3-galactose. J Allergy Clin Immunol. 2009; 123:426–433.
81. Van Nunen SA, O'Connor KS, Clarke LR, Boyle RX, Fernando SL. An association between tick bite reactions and red meat allergy in humans. Med J Aust. 2009; 190:510–511.
82. Ohta M, Shigeta S, Ono K, Takao T, Shimonishi Y, Oka S. Sugar sequences of allergenically active oligosaccharide alcohols isolated from a large-molecular-size sea squirt antigen termed H-antigen. Arch Biochem Biophys. 1989; 275:151–165.
83. Jyo T, Kuwabara M, Kodommari Y, Tanemori N, Asaoku Y, Katsutani T, et al. Cases of immediate-type allergy in oyster shuckers due galacto-oligosaccharide. J Hiroshoma Med Assoc. 1993; 25:19–26.
84. Vo TH, Le NH, Patel MS, Phan LT, Tran Minh NN. Acute allergic reactions in Vietnamese children after drinking a new milk product. Foodborne Pathog Dis. 2012; 9:156–159.
85. Chiang WC, Huang CH, Llanora GV, Gerez I, Goh SH, Shek LP, et al. Anaphylaxis to cow's milk formula containing short-chain galacto-oligosaccharide. J Allergy Clin Immunol. 2012; 130:1361–1367.
86. Kaneko K, Watanabe Y, Kimura K, Matsumoto K, Mizobuchi T, Onoue M. Development of hypoallergenic galacto-oligosaccharides on the basis of allergen analysis. Biosci Biotechnol Biochem. 2014; 78:100–108.
87. Goh DL, Chua KY, Chew FT, Liang RC, Seow TK, Ou KL, et al. Immunochemical characterization of edible bird's nest allergens. J Allergy Clin Immunol. 2001; 107:1082–1087.
88. Trcka J, Schad SG, Scheurer S, Conti A, Vieths S, Gross G, et al. Rice-induced anaphylaxis: IgE-mediated allergy against a 56-kDa glycoprotein. Int Arch Allergy Immunol. 2012; 158:9–17.
89. Leonard R, Petersen BO, Himly M, Kaar W, Wopfner N, Kolarich D, et al. Two novel types of O-glycans on the mugwort pollen allergen Art v 1 and their role in antibody binding. J Biol Chem. 2005; 280:7932–7940.
90. Bublin M, Eiwegger T, Breiteneder H. Do lipids influence the allergic sensitization process? J Allergy Clin Immunol. 2014; 134:521–529.
91. Bashir ME, Lui JH, Palnivelu R, Naclerio RM, Preuss D. Pollen lipidomics: lipid profiling exposes a notable diversity in 22 allergenic pollen and potential biomarkers of the allergic immune response. PLoS One. 2013; 8:e57566.
92. Gilles S, Behrendt H, Ring J, Traidl-Hoffmann C. The pollen enigma: modulation of the allergic immune response by non-allergenic, pollen-derived compounds. Curr Pharm Des. 2012; 18:2314–2319.
93. Agea E, Russano A, Bistoni O, Mannucci R, Nicoletti I, Corazzi L, et al. Human CD1-restricted T cell recognition of lipids from pollens. J Exp Med. 2005; 202:295–308.
94. Zielen S, Trischler J, Schubert R. Lipopolysaccharide challenge: immunological effects and safety in humans. Expert Rev Clin Immunol. 2015; 11:409–418.
95. Nathan AT, Peterson EA, Chakir J, Wills-Karp M. Innate immune responses of airway epithelium to house dust mite are mediated through beta-glucan-dependent pathways. J Allergy Clin Immunol. 2009; 123:612–618.
96. Brown GD, Gordon S. Immune recognition. A new receptor for beta-glucans. Nature. 2001; 413:36–37.
97. Wills-Karp M, Karp CL. Chitin checking: novel insights into asthma. N Engl J Med. 2004; 351:1455–1457.
98. Shuhui L, Mok YK, Wong WS. Role of mammalian chitinases in asthma. Int Arch Allergy Immunol. 2009; 149:369–377.
99. Schubert MS. A superantigen hypothesis for the pathogenesis of chronic hypertrophic rhinosinusitis, allergic fungal sinusitis, and related disorders. Ann Allergy Asthma Immunol. 2001; 87:181–188.
100. Bossios A, Theodoropoulou M, Mondoulet L, Rigby NM, Papadopoulos NG, Bernard H, et al. Effect of simulated gastro-duodenal digestion on the allergenic reactivity of beta-lactoglobulin. Clin Transl Allergy. 2011; 1:6.