Abstract
Schizophrenia is a devastating mental illness that can lead to deterioration in the social and occupational functioning of affected individuals with a major cost to society. A wide range of studies suggest a genetic component to the inheritance of schizophrenia. The molecular genetic studies on schizophrenia have been actively performed since late 1980s. In linkage studies, no loci were replicated across studies and there were no loci surpassing genomewide significance. Candidate gene association studies showed generally inconsistent results and there were no enrichment of smaller P-values. In the GWAS era, the community has coalesced into large international consortia. The largest schizophrenia GWAS to date is 50,000 samples and efforts are ongoing to accumulate 50,000 cases and 50,000 controls as part of ‘PGC2’ collaboration. With the limitation of GWAS results, several alternatives are being explored. In genotyping, the concepts of allelic spectrum including from common polygenic to rare penetrant variation are emerging. Phenotypes include all phenomena beyond DNA. The developments in transcriptomic & proteomic approach and intensive research on endophenotype will bring crucial insights into the nature of schizophrenia in the future. But there still remains our task about research on many factors including environment that influence gene expression (epigenetics), age, and gender.
REFERENCES
1). McGuffin P, Asherson P, Owen M, Farmer A. The strength of the genetic effect. Is there room for an environmental influence in the aetiology of schizophrenia? Br J Psychiatry. 1994; 164:593–599.
2). Owen MJ, Williams NM, O'Donovan MC. The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry. 2004; 9:14–27.
4). McGuffin P, Owen M, Gottesman I. Psychiatric Genetics & Genomics. Oxford, UK: Oxford University Press;2002. p. 247–266.
5). Bassett AS, Chow EWC, Weksberg R. Chromosomal abnormalities and schizophrenia. Am J Med Genet (Semin Med Genet). 2000; 97:45–51.
6). Baron M. Genetics of schizophrenia and the new millennium: progress and pitfalls. Am J Hum Genet. 2001; 68:299–312.
7). MacIntyre DJ, Blackwood DH, Porteous DJ, Pickard BS, Muir WJ. Chromosomal abnormalities and mental illness. Mol Psychiatry. 2003; 8:275–287.
9). Additional support for schizophrenia linkage on chromosomes 6 and 8: a multicenter study. Schizophrenia Linkage Collaborative Group for Chromosomes 3, 6 and 8. Am J Med Genet. 1996; 67:580–594.
10). Gill M, Vallada H, Collier D, Sham P, Holmans P, Murray R, et al. A combined analysis of D22S278 marker alleles in affected sib-pairs: support for a susceptibility locus for schizophrenia at chromosome 22q12. Schizophrenia Collaborative Linkage Group (Chromosome 22). Am J Med Genet. 1996; 67:40–45.
11). Levinson DF, Holmans P, Straub RE, Owen MJ, Wildenauer DB, Gejman PV, et al. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. Am J Hum Genet. 2000; 67:652–663.
12). Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS. Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science. 2000; 288:678–682.
13). Berrettini WH. Susceptibility loci for bipolar disorder: overlap with inherited vulnerability to schizophrenia. Biol Psychiatry. 2000; 47:245–251.
14). Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, et al. Genome scan metaanalysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet. 2003; 73:34–48.
15). Badner JA, Gershon ES. Metaanalysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry. 2002; 7:405–411.
16). Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA, et al. Genomewide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet. 2001; 10:3037–3048.
17). Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Mont-grain N, et al. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry. 2005; 10:486–499.
18). Holliday EG, Nyholt DR, Tirupati S, John S, Ramachandran P, Ramamurti M, et al. Strong evidence for a novel schizophrenia risk locus on chromosome 1p31.1 in homogeneous pedigrees from Tamil Nadu, India. Am J Psychiatry. 2009; 166:206–215.
19). Holmans PA, Riley B, Pulver AE, Owen MJ, Wildenauer DB, Gejman PV, et al. Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms. Mol Psychiatry. 2009; 14:786–795.
20). Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arin-ami T, et al. Metaanalysis of 32 genomewide linkage studies of schizophrenia. Mol Psychiatry. 2009; 14:774–785.
21). Allen NC, Bagade S, McQueen MB, Ioannidis JPA, Kavvoura FK, Khoury MJ, et al. Systematic metaanalyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet. 2008; 40:827–834.
22). Collins AL, Kim Y, Sklar P, O'Donovan MC, Sullivan PF. Hypothesis-driven candidate genes for schizophrenia compared to genomewide association results. Psychological Med. 2011; 42:1–10.
23). Mah S, Nelson MR, Delisi LE, Reneland RH, Markward N, James MR, et al. Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia. Mol Psychiatry. 2006; 11:471–478.
24). Lencz T, Morgan TV, Athanasiou M, Dain B, Reed CR, Kane JM, et al. Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol Psychiatry. 2007; 12:572–580.
25). Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS, et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry. 2008; 13:570–584.
26). Kirov G, Zaharieva I, Georgieva L, Moskvina V, Nikolov I, Cichon S, et al. A genomewide association study in 574 schizophrenia trios using DNA pooling. Mol Psychiatry. 2009; 14:796–803.
27). Liu Y, Chen G, Norton N, Liu W, Zhu H, Zhou P, et al. Whole genome association study in a homogenous population in Shandong peninsula of China reveals JARID2 as a susceptibility gene for schizophrenia. J Biomed Biotechnol. 2009; 2009:536918.
28). Need AC, Ge D, Weale ME, Maia J, Feng S, Heinzen EL, et al. A genomewide investigation of SNPs and CNVs in schizophrenia. PLoS Genet. 2009; 5:e1000373.
29). Psychiatric GWAS Consortium Coordinating Committee. Genomewide Association Studies: History, Rationale, and Prospects for Psychiatric Disorders. Am J Psychiatry. 2009; 166:540–556.
30). Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009; 460:748–752.
31). Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009; 460:753–757.
32). Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al. Common variants conferring risk of schizophrenia. Nature. 2009; 460:744–747.
33). Rietschel M, Mattheisen M, Degenhardt F, Kahn RS, Linszen DH, Os JV, et al. Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol Psychiatry advance online publication, 12 July. 2011. DOI: doi: 10.1038/mp.2011.80.
34). Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, et al. Genomewide association study identifies five new schizophrenia loci. Nat Genet. 2011; 43:969–976.
35). Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J, et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet. 2011; 43:1224–1227.
36). Steinberg S, de Jong S, Andreassen OA, Werge T, Borglum AD, Mors O, et al. Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Human Mol Genet. 2011; 20:4076–4081.
37). Yue WH, Wang HF, Sun LD, Tang FL, Liu ZH, Zhang HX, et al. Genomewide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet. 2011; 43:1228–1231.
38). O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, et al. Identification of loci associated with schizophrenia by genomewide association and followup. Nat Genet. 2008; 40:1053–1055.
39). Ikeda M, Aleksic B, Kinoshita Y, Okochi T, Kawashima K, Kushima I, et al. Genomewide association study of schizophrenia in a Japanese population. Biol Psychiatry. 2011; 69:472–478.
40). Visscher PM, Goddard ME, Derks EM, Wray NR. Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. Mol Psychiatry advance online publication, 14 June. 2011. DOI: doi: 10.1038/mp.2011.65.
41). Craddock N, O'Donovan MC, Owen MJ. Phenotypic and genetic complexity of psychosis. Invited commentary on Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry. 2007; 190:200–203.
42). McClellan JM, Susser E, King MC. Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry. 2007; 190:194–199.
43). Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genomewide associations. PLoS Biol. 2010; 8:e1000294.
44). Anderson CA, Soranzo N, Zeggini E, Barrett JC. Synthetic associations are unlikely to account for many common disease genomewide association signals. PLoS Biol. 2011; 9:e1000580.
45). Wray NR, Purcell SM, Visscher PM. Synthetic associations created by rare variants do not explain most GWAS results. PLoS Biol. 2011; 9:e1000579.
46). Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 2008; 320:539–543.
47). Stone JL, O'Donovan MC, Gurling H, Kirov GK, Blackwood DHR, Corvin A, et al. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008; 455:237–241.
48). Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J, et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 Microdeletions and VIPR2 Duplications. Am J Psychiatry. 2011; 168:302–316.
49). Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S, et al. High frequencies of De Novo CNVs in bipolar disorder and schizophrenia. Neuron. 2011; 72:951–963.
50). Xu B, Roos JL, Levy S, Van Rensburg EJ, Gogos JA, Karayiorgou M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet. 2008; 40:880–885.
51). Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Rud-erfer D, et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry. 2012; 17:142–153.
52). Stefansson H, Rujescu D, Cichon S, Pietilainen OPH, Ingason A, Steinberg S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008; 455:232–236.
53). Kirov G, Rujescu D, Ingason A, Collier DA, O'Donovan MC, Owen MJ. Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull. 2009; 35:851–854.
54). McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S, et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet. 2009; 41:1223–1227.
55). Rujescu D, Ingason A, Cichon S, Pietiläinen OPH, Barnes MR, Toulopoulou T, et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet. 2009; 18:988–996.
56). Ingason A, Rujescu D, Cichon S, Sigurdsson E, Sigmundsson T, Pietilainen OP, et al. Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Mol Psychiatry. 2011; 16:17–25.
57). Vacic V, McCarthy S, Malhotra D, Murray F, Chou HH, Peoples A, et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature. 2011; 471:499–503.
58). Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet. 2011; 43:860–863.
59). Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet. 2011; 43:864–868.
60). Addington AM, Gauthier J, Piton A, Hamdan FF, Raymond A, Gogtay N, et al. A novel frameshift mutation in UPF3B identified in brothers affected with childhood onset schizophrenia and autism spectrum disorders. Mol Psychiatry. 2011; 16:238–239.
61). Awadalla P, Gauthier J, Myers RA, Casals F, Hamdan FF, Griffing AR, et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am J Hum Genet. 2010; 87:316–324.
62). Carroll LS, Williams NM, Moskvina V, Russell E, Norton N, Williams HJ, et al. Evidence for rare and common genetic risk variants for schizophrenia at protein kinase C, alpha. Mol Psychiatry. 2010; 15:1101–1111.
63). Frank RA, McRae AF, Pocklington AJ, van de Lagemaat LN, Navarro P, Croning MD, et al. Clustered coding variants in the glutamate receptor complexes of individuals with schizophrenia and bipolar disorder. PLoS One. 2011; 6:e19011.
64). Gauthier J, Champagne N, Lafrenie're RG, Xiong L, Spiegelman D, Brustein E, et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci USA. 2010; 107:7863–7868.
65). Knight HM, Pickard BS, Maclean A, Malloy MP, Soares DC, McRae AF, et al. A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia, bipolar disorder, and depression. Am J Hum Genet. 2009; 85:833–846.
66). Kushima I, Nakamura Y, Aleksic B, Ikeda M, Ito Y, Shiino T, et al. Resequencing and association analysis of the KALRN and EPHB1 genes and their contribution to schizophrenia susceptibility. Schizophr Bull advance online publication, 1 November. 2010. DOI: doi: 10.1093/schbul/sbq118.
67). Piton A, Gauthier J, Hamdan FF, Lafrenie're RG, Yang Y, Henri-on E, et al. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry. 2011; 16:867–880.
68). Tarabeux J, Champagne N, Brustein E, Hamdan FF, Gauthier J, Lapointe M, et al. De novo truncating mutation in kinesin 17 associated with schizophrenia. Biol Psychiatry. 2010; 68:649–656.
69). Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010; 42:579–589.
70). Mowry BJ, Gratten J. The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Molecular Psychiatry. 2013; 18:38–52.
72). Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V, Szperl A, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet. 2011; 43:1193–1201.
73). Sulem P, Gudbjartsson DF, Walters GB, Helgadottir HT, Helgas-on A, Gudjonsson SA, et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat Genet. 2011; 43:1127–1130.
74). Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet. 2011; 43:1066–1073.
75). Raychaudhuri S, Iartchouk O, Chin K, Tan PL, Tai AK, Ripke S, et al. A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nat Genet. 2011; 43:1232–1236.
76). Bonnefond A, Clement N, Fawcett K, Yengo L, Vaillant E, Guillaume JL, et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet. 2012; 44:297–301.
77). Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V, et al. A novel recurrent mutation in MITF predis-poses to familial and sporadic melanoma. Nature. 2011; 480:99–103.
78). Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011; 12:87–98.
79). Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature. 2011; 478:483–489.
80). Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature. 2011; 478:519–523.
81). Mudge J, Miller NA, Khrebtukova I, Lindquist IE, May GD, Huntley JJ, et al. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in postmortem cerebellum. PLoS One. 2008; 3:e3625.
82). Rollins B, Martin MV, Morgan L, Vawter MP. Analysis of whole genome biomarker expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet. 2010; 153B:919–936.
83). Goldsmith CA, Rogers DP. The case for autoimmunity in the etiology of schizophrenia. Pharmacotherapy. 2008; 28:730–741.
84). Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, et al. Potential metabolite markers of schizophrenia. Mol Psychiatry advance online publication, 25 October. 2011. DOI: doi: 10.1038/mp.2011.131.
85). Deep-Soboslay A, Benes FM, Haroutunian V, Ellis JK, Kleinman JE, Hyde TM. Psychiatric brain banking: three perspectives on current trends and future directions. Biol Psychiatry. 2011; 69:104–112.
86). O'Dushlaine C, Kenny E, Heron E, Donohoe G, Gill M, Morris D, et al. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol Psychiatry. 2010; 16:286–292.
87). Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman CM, Holmans PA, et al. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry advance online publication, 20 September. 2011. DOI: doi: 10.1038/mp. 2011.117.
88). Glessner JT, Reilly MP, Kim CE, Takahashi N, Albano A, Hou C, et al. Strong synaptic transmission impact by copy number variations in schizophrenia. Proc Natl Acad Sci USA. 2010; 107:10584–10589.
89). Chiang CH, Su Y, Wen Z, Yoritomo N, Ross CA, Margolis RL, et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry. 2011; 16:358–360.
90). Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011; 473:221–225.
91). Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S, et al. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet. 2011; 25:88–103.
92). Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C, et al. Neural mechanisms of a genomewide supported psychosis variant. Science. 2009; 324:605.
93). Esslinger C, Kirsch P, Haddad L, Mier D, Sauer C, Erk S, et al. Cognitive state and connectivity effects of the genomewide significant psychosis variant in ZNF804A. Neuroimage. 2011; 54:2514–2523.
94). Paulus FM, Krach S, Bedenbender J, Pyka M, Sommer J, Krug A, et al. Partial support for ZNF804A genotype-dependent alterations in prefrontal connectivity. Human Brain Mapping advance online publication, 31 October. 2011. DOI: doi: 10.1002/hbm.21434.
95). Lencz T, Szeszko PR, DeRosse P, Burdick KE, Bromet EJ, Bilder RM, et al. A schizophrenia risk gene, ZNF804A, influences neuroanatomical and neurocognitive phenotypes. Neuropsychopharmacol Off Publication Am Coll Neuropsychopharmacol. 2010; 35:2284–2291.
96). Erk S, Meyer-Lindenberg A, Schnell K, Opitz von Boberfeld C, Esslinger C, Kirsch P, et al. Brain function in carriers of a genomewide supported bipolar disorder variant. Arch Gen Psychiatry. 2010; 67:803–811.
97). Zhang Q, Shen Q, Xu Z, Chen M, Cheng L, Zhai J, et al. The effects of CACNA1C gene polymorphism on spatial working memory in both healthy controls and patients with schizophrenia or bipolar disorder. Neuropsychopharmacology. 2012; 37:677–684.
98). Chow EW, Ho A, Wei C, Voormolen EH, Crawley AP, Bassett AS. Association of schizophrenia in 22q11.2 deletion syndrome and gray matter volumetric deficits in the superior temporal gyrus. Am J Psychiatry. 2011; 168:522–529.
99). Neul JL. Unfolding neurodevelopmental disorders: the mystery of developing connections. Nat Med. 2011; 17:1353–1355.
100). Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet. 2012; 44:552–561.
101). Enhancing Neuro Imaging Genetics through Meta-Analysis Consortium. Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nat Genet. 2012; 44:545–551.
102). Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet. 2009; 373:234–239.
103). Gottesman II, Laursen TM, Bertelsen A, Mortensen PB. Severe mental disorders in offspring with 2 psychiatrically ill parents. Arch Gen Psychiatry. 2010; 67:252–257.
104). Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, et al. Autism genomewide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009; 459:569–573.
105). Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K, et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med. 2008; 359:1685–1699.
106). Quintero-Rivera F, Sharifi-Hannauer P, Martinez-Agosto JA. Autistic and psychiatric findings associated with the 3q29 micro-deletion syndrome: case report and review. Am J Med Genet A. 2010; 152A:2459–2467.
107). Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zga-ga L, Manolio T, et al. Abundant pleiotropy in human complex diseases and traits. Am J Human Genet. 2011; 89:607–618.
108). Kvajo M, McKellar H, Gogos JA. Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience advance online publication, 27 July. 2011. DOI: doi: 10.1016/j.neuroscience. 2011.07.051 (in press).
109). Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, et al. TBX1 is responsible for cardiovascular defects in velo-car-dio-facial/DiGeorge syndrome. Cell. 2001; 104:619–629.
110). Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R, et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet. 2008; 40:751–760.
111). Burne T, Scott E, van Swinderen B, Hilliard M, Reinhard J, Clau-dianos C, et al. Big ideas for small brains: what can psychiatry learn from worms, flies, bees and fish? Mol Psychiatry. 2011; 16:7–16.
112). van Alphen B, van Swinderen B. Drosophila strategies to study psychiatric disorders. Brain Res Bull advance online publication, 17 September. 2011. DOI: doi: 10.1016/j.brainresbull.2011.09.007 (in press).
113). Brennand KJ, Gage FH. Concise review: the promise of human induced pluripotent stem cell-based studies of schizophrenia. Stem Cells. 2011; 29:1915–1922.
114). Dolmetsch R, Geschwind DH. The human brain in a dish: the promise of iPSCderived neurons. Cell. 2011; 145:831–834.