Journal List > Korean J Schizophr Res > v.16(1) > 1057790

Korean J Schizophr Res. 2013 Apr;16(1):5-13. Korean.
Published online April 30, 2013.  https://doi.org/10.16946/kjsr.2013.16.1.5
Copyright © 2013 Korean Society for Schizophrenia
Recent Updates in Schizophrenia Genetics
Hee Jeong Jeong, MD,1,2,3 Byung Dae Lee, MD, PhD,1,2,3 Je Min Park, MD, PhD,1,2,3 Young Min Lee, MD,1,2,3 and Eunsoo Moon, MD1,2,3
1Department of Psychiatry, Pusan National University Hospital, Busan, Korea.
2Department of Psychiatry, Pusan National University College of Medicine, Busan, Korea.
3Medical Research Institute, Pusan National University Hospital, Busan, Korea.

Address for correspondence: Byung Dae Lee, Department of Psychiatry, Pusan National University Hospital, 305 Gudeok-Ro, Seo-Gu, Busan 602-739, Korea. Tel: 051-240-7304, Fax: 051-248-3648, Email: bdlee@pusan.ac.kr
Received April 02, 2013; Revised April 18, 2013; Accepted April 20, 2013.

Abstract

Schizophrenia is a devastating mental illness that can lead to deterioration in the social and occupational functioning of affected individuals with a major cost to society. A wide range of studies suggest a genetic component to the inheritance of schizophrenia. The molecular genetic studies on schizophrenia have been actively performed since late 1980s. In linkage studies, no loci were replicated across studies and there were no loci surpassing genome-wide significance. Candidate gene association studies showed generally inconsistent results and there were no enrichment of smaller P-values. In the GWAS era, the community has coalesced into large international consortia. The largest schizophrenia GWAS to date is 50,000 samples and efforts are ongoing to accumulate 50,000 cases and 50,000 controls as part of 'PGC2' collaboration. With the limitation of GWAS results, several alternatives are being explored. In genotyping, the concepts of allelic spectrum including from common polygenic to rare penetrant variation are emerging. Phenotypes include all phenomena beyond DNA. The developments in transcriptomic & proteomic approach and intensive research on endophenotype will bring crucial insights into the nature of schizophrenia in the future. But there still remains our task about research on many factors including environment that influence gene expression (epigenetics), age, and gender.

Keywords: Schizophrenia; GWAS; Allelic spectrum; Sequencing; Epigenetics

Notes

This work was supported by Clinical Research Grant from Pusan National University Hospital 2012.

References
1. McGuffin P, Asherson P, Owen M, Farmer A. The strength of the genetic effect. Is there room for an environmental influence in the aetiology of schizophrenia? Br J Psychiatry 1994;164:593–599.
2. Owen MJ, Williams NM, O'Donovan MC. The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004;9:14–27.
3. Bray NJ, Owen MJ. Searching for schizophrenia genes. Trends Mol Med 2001;7:169–174.
4. McGuffin P, Owen M, Gottesman I. In: Psychiatric Genetics & Genomics. Oxford, UK: Oxford University Press; 2002. pp. 247-266.
5. Bassett AS, Chow EWC, Weksberg R. Chromosomal abnormalities and schizophrenia. Am J Med Genet 2000;97:45–51.
6. Baron M. Genetics of schizophrenia and the new millennium: progress and pitfalls. Am J Hum Genet 2001;68:299–312.
7. MacIntyre DJ, Blackwood DH, Porteous DJ, Pickard BS, Muir WJ. Chromosomal abnormalities and mental illness. Mol Psychiatry 2003;8:275–287.
8. Moldin SO. NIMH Human Genetics Initiative: 2003 update. Am J Psychiatry 2003;160:621–622.
9. Additional support for schizophrenia linkage on chromosomes 6 and 8: a multicenter study. Schizophrenia Linkage Collaborative Group for Chromosomes 3, 6 and 8. Am J Med Genet 1996;67:580–594.
10. Gill M, Vallada H, Collier D, Sham P, Holmans P, Murray R, et al. A combined analysis of D22S278 marker alleles in affected sib-pairs: support for a susceptibility locus for schizophrenia at chromosome 22q12. Schizophrenia Collaborative Linkage Group (Chromosome 22). Am J Med Genet 1996;67:40–45.
11. Levinson DF, Holmans P, Straub RE, Owen MJ, Wildenauer DB, Gejman PV, et al. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. Am J Hum Genet 2000;67:652–663.
12. Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS. Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science 2000;288:678–682.
13. Berrettini WH. Susceptibility loci for bipolar disorder: overlap with inherited vulnerability to schizophrenia. Biol Psychiatry 2000;47:245–251.
14. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 2003;73:34–48.
15. Badner JA, Gershon ES. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002;7:405–411.
16. Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA, et al. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 2001;10:3037–3048.
17. Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N, et al. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 2005;10:486–499.
18. Holliday EG, Nyholt DR, Tirupati S, John S, Ramachandran P, Ramamurti M, et al. Strong evidence for a novel schizophrenia risk locus on chromosome 1p31.1 in homogeneous pedigrees from Tamil Nadu, India. Am J Psychiatry 2009;166:206–215.
19. Holmans PA, Riley B, Pulver AE, Owen MJ, Wildenauer DB, Gejman PV, et al. Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms. Mol Psychiatry 2009;14:786–795.
20. Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, et al. Metaanalysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry 2009;14:774–785.
21. Allen NC, Bagade S, McQueen MB, Ioannidis JPA, Kavvoura FK, Khoury MJ, et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008;40:827–834.
22. Collins AL, Kim Y, Sklar P, O'Donovan MC, Sullivan PF. Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results. Psychol Med 2011;42:607–616.
23. Mah S, Nelson MR, Delisi LE, Reneland RH, Markward N, James MR, et al. Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia. Mol Psychiatry 2006;11:471–478.
24. Lencz T, Morgan TV, Athanasiou M, Dain B, Reed CR, Kane JM, et al. Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol Psychiatry 2007;12:572–580.
25. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS, et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008;13:570–584.
26. Kirov G, Zaharieva I, Georgieva L, Moskvina V, Nikolov I, Cichon S, et al. A genome-wide association study in 574 schizophrenia trios using DNA pooling. Mol Psychiatry 2009;14:796–803.
27. Liu Y, Chen G, Norton N, Liu W, Zhu H, Zhou P, et al. Whole genome association study in a homogenous population in Shandong peninsula of China reveals JARID2 as a susceptibility gene for schizophrenia. J Biomed Biotechnol 2009;2009:536918.
28. Need AC, Ge D, Weale ME, Maia J, Feng S, Heinzen EL, et al. A genomewide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 2009;5:e1000373.
29. Psychiatric GWAS Consortium Coordinating Committee. Genomewide Association Studies: History, Rationale, and Prospects for Psychiatric Disorders. Am J Psychiatry 2009;166:540–556.
30. International Schizophrenia Consortium. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009;460:748–752.
31. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009;460:753–757.
32. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al. Common variants conferring risk of schizophrenia. Nature 2009;460:744–747.
33. Rietschel M, Mattheisen M, Degenhardt F, Kahn RS, Linszen DH, Os JV, et al. Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol Psychiatry.
advance online publication, 12 July 2011; doi:10.1038/mp.2011.80.
34. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, et al. Genomewide association study identifies five new schizophrenia loci. Nat Genet 2011;43:969–976.
35. Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J, et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 2011;43:1224–1227.
36. Steinberg S, de Jong S, Andreassen OA, Werge T, Borglum AD, Mors O, et al. Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet 2011;20:4076–4081.
37. Yue WH, Wang HF, Sun LD, Tang FL, Liu ZH, Zhang HX, et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 2011;43:1228–1231.
38. O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008;40:1053–1055.
39. Ikeda M, Aleksic B, Kinoshita Y, Okochi T, Kawashima K, Kushima I, et al. Genomewide association study of schizophrenia in a Japanese population. Biol Psychiatry 2011;69:472–478.
40. Visscher PM, Goddard ME, Derks EM, Wray NR. Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. Mol Psychiatry.
advance online publication, 14 June 2011;doi:10.1038/mp.2011.65.
41. Craddock N, O'Donovan MC, Owen MJ. Phenotypic and genetic complexity of psychosis. Invited commentary on Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 2007;190:200–203.
42. McClellan JM, Susser E, King MC. Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 2007;190:194–199.
43. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol 2010;8:e1000294.
44. Anderson CA, Soranzo N, Zeggini E, Barrett JC. Synthetic associations are unlikely to account for many common disease genome-wide association signals. PLoS Biol 2011;9:e1000580.
45. Wray NR, Purcell SM, Visscher PM. Synthetic associations created by rare variants do not explain most GWAS results. PLoS Biol 2011;9:e1000579.
46. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008;320:539–543.
47. Stone JL, O'Donovan MC, Gurling H, Kirov GK, Blackwood DHR, Corvin A, et al. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008;455:237–241.
48. Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J, et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 Microdeletions and VIPR2 Duplications. Am J Psychiatry 2011;168:302–316.
49. Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S, et al. High frequencies of De Novo CNVs in bipolar disorder and schizophrenia. Neuron 2011;72:951–963.
50. Xu B, Roos JL, Levy S, Van Rensburg EJ, Gogos JA, Karayiorgou M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008;40:880–885.
51. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 2012;17:142–153.
52. Stefansson H, Rujescu D, Cichon S, Pietilainen OPH, Ingason A, Steinberg S, et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008;455:232–236.
53. Kirov G, Rujescu D, Ingason A, Collier DA, O'Donovan MC, Owen MJ. Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull 2009;35:851–854.
54. McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S, et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 2009;41:1223–1227.
55. Rujescu D, Ingason A, Cichon S, Pietiläinen OPH, Barnes MR, Toulopoulou T, et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 2009;18:988–996.
56. Ingason A, Rujescu D, Cichon S, Sigurdsson E, Sigmundsson T, Pietilainen OP, et al. Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Mol Psychiatry 2011;16:17–25.
57. Vacic V, McCarthy S, Malhotra D, Murray F, Chou HH, Peoples A, et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 2011;471:499–503.
58. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 2011;43:860–863.
59. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 2011;43:864–868.
60. Addington AM, Gauthier J, Piton A, Hamdan FF, Raymond A, Gogtay N, et al. A novel frameshift mutation in UPF3B identified in brothers affected with childhood onset schizophrenia and autism spectrum disorders. Mol Psychiatry 2011;16:238–239.
61. Awadalla P, Gauthier J, Myers RA, Casals F, Hamdan FF, Griffing AR, et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am J Hum Genet 2010;87:316–324.
62. Carroll LS, Williams NM, Moskvina V, Russell E, Norton N, Williams HJ, et al. Evidence for rare and common genetic risk variants for schizophrenia at protein kinase C, alpha. Mol Psychiatry 2010;15:1101–1111.
63. Frank RA, McRae AF, Pocklington AJ, van de Lagemaat LN, Navarro P, Croning MD, et al. Clustered coding variants in the glutamate receptor complexes of individuals with schizophrenia and bipolar disorder. PLoS One 2011;6:e19011.
64. Gauthier J, Champagne N, Lafrenie're RG, Xiong L, Spiegelman D, Brustein E, et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci U S A 2010;107:7863–7868.
65. Knight HM, Pickard BS, Maclean A, Malloy MP, Soares DC, McRae AF, et al. A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia, bipolar disorder, and depression. Am J Hum Genet 2009;85:833–846.
66. Kushima I, Nakamura Y, Aleksic B, Ikeda M, Ito Y, Shiino T, et al. Resequencing and association analysis of the KALRN and EPHB1 genes and their contribution to schizophrenia susceptibility. Schizophr Bull.
advance online publication, 1 November 2010;doi:10.1093/schbul/sbq118.
67. Piton A, Gauthier J, Hamdan FF, Lafrenie're RG, Yang Y, Henrion E, et al. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry 2011;16:867–880.
68. Tarabeux J, Champagne N, Brustein E, Hamdan FF, Gauthier J, Lapointe M, et al. De novo truncating mutation in kinesin 17 associated with schizophrenia. Biol Psychiatry 2010;68:649–656.
69. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010;42:579–589.
70. Mowry BJ, Gratten J. The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Mol Psychiatry 2013;18:38–52.
71. Cortes A, Brown MA. Promise and pitfalls of the immunochip. Arthritis Res Ther 2011;13:101.
72. Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V, Szperl A, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 2011;43:1193–1201.
73. Sulem P, Gudbjartsson DF, Walters GB, Helgadottir HT, Helgason A, Gudjonsson SA, et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat Genet 2011;43:1127–1130.
74. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet 2011;43:1066–1073.
75. Raychaudhuri S, Iartchouk O, Chin K, Tan PL, Tai AK, Ripke S, et al. A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nat Genet 2011;43:1232–1236.
76. Bonnefond A, Clement N, Fawcett K, Yengo L, Vaillant E, Guillaume JL, et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 2012;44:297–301.
77. Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V, et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 2011;480:99–103.
78. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 2011;12:87–98.
79. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature 2011;478:483–489.
80. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 2011;478:519–523.
81. Mudge J, Miller NA, Khrebtukova I, Lindquist IE, May GD, Huntley JJ, et al. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum. PLoS One 2008;3:e3625.
82. Rollins B, Martin MV, Morgan L, Vawter MP. Analysis of whole genome biomarker expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 2010;153B:919–936.
83. Goldsmith CA, Rogers DP. The case for autoimmunity in the etiology of schizophrenia. Pharmacotherapy 2008;28:730–741.
84. Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, et al. Potential metabolite markers of schizophrenia. Mol Psychiatry.
advance online publication, 25 October 2011;doi:10.1038/mp.2011.131.
85. Deep-Soboslay A, Benes FM, Haroutunian V, Ellis JK, Kleinman JE, Hyde TM. Psychiatric brain banking: three perspectives on current trends and future directions. Biol Psychiatry 2011;69:104–112.
86. O'Dushlaine C, Kenny E, Heron E, Donohoe G, Gill M, Morris D, et al. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol Psychiatry 2010;16:286–292.
87. Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman CM, Holmans PA, et al. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry.
advance online publication, 20 September 2011;doi:10.1038/mp.2011.117.
88. Glessner JT, Reilly MP, Kim CE, Takahashi N, Albano A, Hou C, et al. Strong synaptic transmission impact by copy number variations in schizophrenia. Proc Natl Acad Sci U S A 2010;107:10584–10589.
89. Chiang CH, Su Y, Wen Z, Yoritomo N, Ross CA, Margolis RL, et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry 2011;16:358–360.
90. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011;473:221–225.
91. Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S, et al. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 2011;25:88–103.
92. Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C, et al. Neural mechanisms of a genome-wide supported psychosis variant. Science 2009;324:605.
93. Esslinger C, Kirsch P, Haddad L, Mier D, Sauer C, Erk S, et al. Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neuroimage 2011;54:2514–2523.
94. Paulus FM, Krach S, Bedenbender J, Pyka M, Sommer J, Krug A, et al. Partial support for ZNF804A genotype-dependent alterations in prefrontal connectivity. Hum Brain Mapp.
advance online publication, 31 October 2011;doi:10.1002/hbm.21434.
95. Lencz T, Szeszko PR, DeRosse P, Burdick KE, Bromet EJ, Bilder RM, et al. A schizophrenia risk gene, ZNF804A, influences neuroanatomical and neurocognitive phenotypes. Neuropsychopharmacology 2010;35:2284–2291.
96. Erk S, Meyer-Lindenberg A, Schnell K, Opitz von Boberfeld C, Esslinger C, Kirsch P, et al. Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry 2010;67:803–811.
97. Zhang Q, Shen Q, Xu Z, Chen M, Cheng L, Zhai J, et al. The effects of CACNA1C gene polymorphism on spatial working memory in both healthy controls and patients with schizophrenia or bipolar disorder. Neuropsychopharmacology 2012;37:677–684.
98. Chow EW, Ho A, Wei C, Voormolen EH, Crawley AP, Bassett AS. Association of schizophrenia in 22q11.2 deletion syndrome and gray matter volumetric deficits in the superior temporal gyrus. Am J Psychiatry 2011;168:522–529.
99. Neul JL. Unfolding neurodevelopmental disorders: the mystery of developing connections. Nat Med 2011;17:1353–1355.
100. Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 2012;44:552–561.
101. Enhancing Neuro Imaging Genetics through Meta-Analysis Consortium. Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nat Genet 2012;44:545–551.
102. Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009;373:234–239.
103. Gottesman II, Laursen TM, Bertelsen A, Mortensen PB. Severe mental disorders in offspring with 2 psychiatrically ill parents. Arch Gen Psychiatry 2010;67:252–257.
104. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, et al. Autism genomewide copy number variation reveals ubiquitin and neuronal genes. Nature 2009;459:569–573.
105. Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K, et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 2008;359:1685–1699.
106. Quintero-Rivera F, Sharifi-Hannauer P, Martinez-Agosto JA. Autistic and psychiatric findings associated with the 3q29 microdeletion syndrome: case report and review. Am J Med Genet A 2010;152A:2459–2467.
107. Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T, et al. Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet 2011;89:607–618.
108. Kvajo M, McKellar H, Gogos JA. Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience.
advance online publication, 27 July 2011;doi:10.1016/j.neuroscience.2011.07.051 (in press).
109. Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001;104:619–629.
110. Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R, et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008;40:751–760.
111. Burne T, Scott E, van Swinderen B, Hilliard M, Reinhard J, Claudianos C, et al. Big ideas for small brains: what can psychiatry learn from worms, flies, bees and fish? Mol Psychiatry 2011;16:7–16.
112. van Alphen B, van Swinderen B. Drosophila strategies to study psychiatric disorders. Brain Res Bull.
advance online publication, 17 September 2011;doi:10.1016/j.brainresbull.2011.09.007 (in press).
113. Brennand KJ, Gage FH. Concise review: the promise of human induced pluripotent stem cell-based studies of schizophrenia. Stem Cells 2011;29:1915–1922.
114. Dolmetsch R, Geschwind DH. The human brain in a dish: the promise of iPSCderived neurons. Cell 2011;145:831–834.
115. Dragunow M. The adult human brain in preclinical drug development. Nat Rev Drug Discov 2008;7:659–666.
116. Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 2009;10:724–735.