Journal List > Korean J Schizophr Res > v.16(1) > 1057789

Korean J Schizophr Res. 2013 Apr;16(1):38-42. Korean.
Published online April 30, 2013.  https://doi.org/10.16946/kjsr.2013.16.1.38
Copyright © 2013 Korean Society for Schizophrenia
Association between Tardive Dyskinesia and Polymorphisms of TNF-α Gene in Korean Schizophrenia Patients
Soo-Jung So, MD,1 Seung-Gul Kang, MD, PhD,2 Ho-Kyoung Yoon, MD, PhD,1 Young-Min Park, MD, PhD,3 Heon-Jeong Lee, MD, PhD,1 and Leen Kim, MD, PhD1
1Department of Psychiatry, Korea University College of Medicine, Seoul, Korea.
2Department of Psychiatry, Gachon University, School of Medicine, Incheon, Korea.
3Department of Psychiatry, Inje University College of Medicine, Ilsan Paik Hospital, Goyang, Korea.

Address for correspondence: Heon-Jeong Lee, Department of Psychiatry, Anam Hospital, Korea University College of Medicine, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Korea. Tel: 02-920-6721, Fax: 02-929-7679, Email: leehjeong@korea.ac.kr
Received April 03, 2013; Revised April 19, 2013; Accepted April 20, 2013.

Abstract

Objectives

There are emerging evidences suggest that the development of tardive dyskinesia (TD) is related to the oxidative stress, excitotoxicity, and immune activation. The purpose of this study is to investigate whether single-nucleotide polymorphisms (SNPs) of tumor necrosis factor (TNF)-α genes are associated with the susceptibility of TD and schizophrenia.

Methods

We investigated two hundred and eighty Korean schizophrenic patients. The schizophrenic participants consisted of patients with (n=105) and without (n=175) TD who were matched for antipsychotic drug exposure and other relevant variables. The TNF-α gene -308G/A SNPs were analyzed by polymerase chain reaction (PCR)-based methods.

Results

The frequencies of genotype (χ2=0.33, p=0.848) of the TNF-α gene -308 G/A SNP did not differ significantly between schizophrenic patients with and without TD. The difference of allele frequencies (χ2=0.28, p=0.594) of the TNF-α gene between the schizophrenic patients with and without TD were not significant.

Conclusion

These results suggest that the TNF-α gene -308 G/A SNPs are not associated with TD and schizophrenia in a Korean population. Further association studies of TD with other candidate genes for cytokines would help us understand the pathophysiological mechanisms of TD.

Keywords: Tardive dyskinesia; Schizophrenia; TNF-α; Genetic polymorphism

Tables


Table 1
Comparison of the genotype and allele frequencies of TNF-α between schizophrenic patients with and without TD
Click for larger image

References
1. Casey DE. Neuroleptic drug-induced extrapyramidal syndromes and tardive dyskinesia. Schizophr Res 1991;4:109–120.
2. Jeste DV, Wyatt RJ. In: Understanding and treating tardive dyskinesia. New York: Guilford Press; 1982. pp. 363.
3. Khot V, Egan M, Hyde T, Wyatt R. Neuroleptics and classic tardive dyskinesia. In: Lang AE, Weiner WJ, editors. Drug-induced movement disorders. New York: Futura; 1992. pp. 121-166.
4. Miller CH, Simioni I, Oberbauer H, Schwitzer J, Barnas C, Kulhanek F, et al. Tardive dyskinesia prevalence rates during a ten-year follow-up. J Nerv Ment Dis 1995;183:404–407.
5. Sweet RA, Mulsant BH, Gupta B, Rifai AH, Pasternak RE, McEachran A, et al. Duration of neuroleptic treatment and prevalence of tardive dyskinesia in late life. Arch Gen Psychiatry 1995;52:478–486.
6. Glazer WM, Morgenstern H, Doucette JT. Predicting the long-term risk of tardive dyskinesia in outpatients maintained on neuroleptic medications. J Clin Psychiatry 1993;54:133–139.
7. Rosengarten H, Schweitzer JW, Friedhoff AJ. Possible genetic factors underlying the pathophysiology of tardive dyskinesia. Pharmacol Biochem Behav 1994;49:663–667.
8. Tamminga CA, Dale JM, Goodman L, Kaneda H, Kaneda N. Neuroleptic-induced vacuous chewing movements as an animal model of tardive dyskinesia: a study in three rat strains. Psychopharmacology 1990;102:474–478.
9. Müller DJ, Schulze TG, Knapp M, Held T, Krauss H, Weber T, et al. Familial occurrence of tardive dyskinesia. Acta Psychiatr Scand 2001;104:375–379.
10. Weinhold P, Wegner JT, Kane JM. Familial occurrence of tardive dyskinesia. J Clin Psychiatry 1981;42:165–166.
11. Tarsy D, Baldessarini RJ. The pathophysiologic basis of tardive dyskinesia. Biol Psychiatry 1977;12:431–450.
12. Casey DE, Gerlach J, Magelund G, Christensen TR. Gamma-acetylenic GABA in tardive dyskinesia. Arch Gen Psychiatry 1980;37:1376–1379.
13. Nagao T, Ohshimo T, Mitsunobu K, Sato M, Otsuki S. Cerebrospinal fluid monoamine metabolites and cyclic nucleotides in chronic schizophrenic patients with tardive dyskinesia or drug-induced tremor. Biol Psychiatry 1979;14:509–523.
14. Andreassen OA, Jorgensen HA. Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats. Implications for tardive dyskinesia? Prog Neurobiol 2000;61:525–541.
15. Naudin J, Capo C, Giusano B, Mege JL, Azorin JM. A differential role for interleukin-6 and tumor necrosis factor-alpha in schizophrenia? Schizophr Res 1997;26:227–233.
16. Amital H, Shoenfeld Y. Autoimmunity and schizophrenia: an epiphenomenon or an etiology? Isr J Med Sci 1993;29:593–597.
17. Mendelovic S, Doron A, Shoenfeld Y. [schizophrenia--an autoimmune disease?]. Harefuah 1997;133:629–631.
18. Jones AL, Mowry BJ, Pender MP, Greer JM. Immune dysregulation and self-reactivity in schizophrenia: do some cases of schizophrenia have an autoimmune basis? Immunol Cell Biol 2005;83:9–17.
19. Yolken R. Viruses and schizophrenia: a focus on herpes simplex virus. Herpes 2004;11:83A–88A.
20. Bártová L, Rajcani J, Pogady J. Herpes simplex virus antibodies in the cerebrospinal fluid of schizophrenic patients. Acta Virol 1987;31:443–446.
21. Mayilyan KR, Presanis JS, Arnold JN, Sim RB. Discrete MBL-MASP complexes show wide inter-individual variability in concentration: data from UK vs Armenian populations. Int J Immunopathol Pharmacol 2006;19:567–580.
22. Kronfol Z, Remick DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry 2000;157:683–694.
23. Kowalski J, Blada P, Kucia K, Madej A, Herman ZS. Neuroleptics normalize increased release of interleukin-1 beta and tumor necrosis factor-alpha from monocytes in schizophrenia. Schizophr Res 2001;50:169–175.
24. Cazzullo CL, Sacchetti E, Galluzzo A, Panariello A, Colombo F, Zagliani A, et al. Cytokine profiles in drug-naive schizophrenic patients. Schizophr Res 2001;47:293–298.
25. Kim YK, Lee MS, Suh KY. Decreased interleukin-2 production in korean schizophrenic patients. Biol psychiatry 1998;43:701–704.
26. Ganguli R, Brar JS, Solomon W, Chengappa KN, Rabin BS. Altered interleukin-2 production in schizophrenia: association between clinical state and autoantibody production. Psychiatry Res 1992;44:113–123.
27. Gaughran F, O'Neill E, Cole M, Collins K, Daly RJ, Shanahan F. Increased soluble interleukin 2 receptor levels in schizophrenia. Schizophr Res 1998;29:263–267.
28. Cazzullo CL, Scarone S, Grassi B, Vismara C, Trabattoni D, Clerici M. Cytokines production in chronic schizophrenia patients with or without paranoid behaviour. Prog Neuropsychopharmacol Biol Psychiatry 1998;22:947–957.
29. Monteleone P, Fabrazzo M, Tortorella A, Maj M. Plasma levels of interleukin-6 and tumor necrosis factor alpha in chronic schizophrenia: effects of clozapine treatment. Psychiatry Res 1997;71:11–17.
30. Sacchetti E, Bocchio-Chiavetto L, Valsecchi P, Scassellati C, Pas-qualetti P, Bonvicini C, et al. -G308a tumor necrosis factor alpha func-tional polymorphism and schizophrenia risk: meta-analysis plus association study. Brain Behav Immun 2007;21:450–457.
31. Czerski PM, Rybakowski F, Kapelski P, Rybakowski JK, Dmitrzak-Weglarz M, Leszczyńska-Rodziewicz A, et al. Association of tumor necrosis factor -308G/A promoter polymorphism with schizophrenia and bipolar affective disorder in a polish population. Neuropsychobiology 2008;57:88–94.
32. Bishnoi M, Chopra K, Kulkarni SK. Differential striatal levels of TNF-α, NFκB p65 subunit and dopamine with chronic typical and aty-pical neuroleptic treatment: role in orofacial dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:1473–1478.
33. Kim IS, Yoon HK, Kang SG, Park YM, Kim YK, Kim SH, et al. No association between PAWR gene polymorphisms and tardive dyskinesia in schizophrenia patients. Psychiatry Investig 2012;9:191–194.
34. Schooler NR, Kane JM. Research diagnoses for tardive dyskinesia. Arch Gen Psychiatry 1982;39:486–487.
35. Maier SF, Watkins LR. Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev 1998;105:83–107.
36. Capuron L, Lamarque D, Dantzer R, Goodall G. Attentional and mne-monic deficits associated with infectious disease in humans. Psychol Med 1999;29:291–297.
37. Yirmiya R, Weidenfeld J, Pollak Y, Morag M, Morag A, Avitsur R, et al. Cytokines, "depression due to a general medical condition," and antidepressant drugs. Adv Exp Med Biol 1999;461:283–316.
38. Marx CE, Jarskog LF, Lauder JM, Lieberman JA, Gilmore JH. Cytokine effects on cortical neuron MAP-2 immunoreactivity: implications for schizophrenia. Biol Psychiatry 2001;50:743–749.
39. Boin F, Zanardini R, Pioli R, Altamura CA, Maes M, Gennarelli M. Association between -G308a tumor necrosis factor alpha gene polymorphism and schizophrenia. Mol Psychiatry 2001;6:79–82.
40. Kamińska T, Szuster-Ciesielska A, Wysocka A, Marmurowska-Mi-chałowska H, Dubas-Slemp H, Kandefer-Szerszeń M. Serum cytokine level and production of reactive oxygen species (ROS) by blood neutrophils from a schizophrenic patient with hypersensitivity to neuroleptics. Med Sci Monit 2003;9:CS71–CS75.