Journal List > Korean J Schizophr Res > v.16(1) > 1057789

So, Kang, Yoon, Park, Lee, and Kim: Association between Tardive Dyskinesia and Polymorphisms of TNF-α Gene in Korean Schizophrenia Patients

Abstract

Objectives

There are emerging evidences suggest that the development of tardive dyskinesia (TD) is related to the oxidative stress, excitotoxicity, and immune activation. The purpose of this study is to investigate whether single-nucleotide polymorphisms (SNPs) of tumor necrosis factor (TNF)-α genes are associated with the susceptibility of TD and schizophrenia.

Methods

We investigated two hundred and eighty Korean schizophrenic patients. The schizophrenic participants consisted of patients with (n=105) and without (n=175) TD who were matched for antipsychotic drug exposure and other relevant variables. The TNF-α gene -308G/A SNPs were analyzed by polymerase chain reaction (PCR)-based methods.

Results

The frequencies of genotype (χ2=0.33, p=0.848) of the TNF-α gene -308 G/A SNP did not differ significantly between schizophrenic patients with and without TD. The difference of allele frequencies (χ2=0.28, p=0.594) of the TNF-α gene between the schizophrenic patients with and without TD were not significant.

Conclusion

These results suggest that the TNF-α gene -308 G/A SNPs are not associated with TD and schizophrenia in a Korean population. Further association studies of TD with other candidate genes for cytokines would help us understand the pathophysiological mechanisms of TD.

REFERENCES

1). Casey DE. Neuroleptic drug-induced extrapyramidal syndromes and tardive dyskinesia. Schizophr Res. 1991; 4:109–120.
crossref
2). Jeste DV, Wyatt RJ. Understanding and treating tardive dyskinesia. New York: Guilford Press;1982. p.363.
3). Khot V, Egan M, Hyde T, Wyatt R. Neuroleptics and classic tardive dyskinesia. Lang AE, Weiner WJ, editors. editors.Drug-induced movement disorders. New York: Futura;1992. p. 121–166.
4). Miller CH, Simioni I, Oberbauer H, Schwitzer J, Barnas C, Kulhanek F, et al. Tardive dyskinesia prevalence rates during a ten-year followup. J Nerv Ment Dis. 1995; 183:404–407.
crossref
5). Sweet RA, Mulsant BH, Gupta B, Rifai AH, Pasternak RE, McEa-chran A, et al. Duration of neuroleptic treatment and prevalence of tardive dyskinesia in late life. Arch Gen Psychiatry. 1995; 52:478–486.
crossref
6). Glazer WM, Morgenstern H, Doucette JT. Predicting the longterm risk of tardive dyskinesia in outpatients maintained on neuroleptic medications. J Clin Psychiatry. 1993; 54:133–139.
7). Rosengarten H, Schweitzer JW, Friedhoff AJ. Possible genetic factors underlying the pathophysiology of tardive dyskinesia. Pharmacol Biochem Behav. 1994; 49:663–667.
crossref
8). Tamminga CA, Dale JM, Goodman L, Kaneda H, Kaneda N. Neuroleptic-induced vacuous chewing movements as an animal model of tardive dyskinesia: a study in three rat strains. Psychopharmacology. 1990; 102:474–478.
crossref
9). Muller DJ, Schulze TG, Knapp M, Held T, Krauss H, Weber T, et al. Familial occurrence of tardive dyskinesia. Acta Psychiatr Scand. 2001; 104:375–379.
10). Weinhold P, Wegner JT, Kane JM. Familial occurrence of tardive dyskinesia. J Clin Psychiatry. 1981; 42:165–166.
11). Tarsy D, Baldessarini RJ. The pathophysiologic basis of tardive dyskinesia. Biol Psychiatry. 1977; 12:431–450.
12). Casey DE, Gerlach J, Magelund G, Christensen TR. Gamma-acetylenic GABA in tardive dyskinesia. Arch Gen Psychiatry. 1980; 37:1376–1379.
crossref
13). Nagao T, Ohshimo T, Mitsunobu K, Sato M, Otsuki S. Cerebrospinal fluid monoamine metabolites and cyclic nucleotides in chronic schizophrenic patients with tardive dyskinesia or drug-induced tremor. Biol Psychiatry. 1979; 14:509–523.
14). Andreassen OA, Jorgensen HA. Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats. Implications for tardive dyskinesia? Prog Neurobiology. 2000; 61:525–541.
crossref
15). Naudin J, Capo C, Giusano B, Mege JL, Azorin JM. A differential role for interleukin-6 and tumor necrosis factor-alpha in schizophrenia? Schizophr Res. 1997; 26:227–233.
16). Amital H, Shoenfeld Y. Autoimmunity and schizophrenia: an epiphenomenon or an etiology? Isr J Med Sci. 1993; 29:593–597.
17). Mendelovic S, Doron A, Shoenfeld Y. [schizophrenia–an autoimmune disease?]. Harefuah. 1997; 133:629–631.
18). Jones AL, Mowry BJ, Pender MP, Greer JM. Immune dysregulation and self-reactivity in schizophrenia: do some cases of schizophrenia have an autoimmune basis? Immunol Cell Biol. 2005; 83:9–17.
crossref
19). Yolken R. Viruses and schizophrenia: a focus on herpes simplex virus. Herpes. 2004; 11:83A–88A.
20). Bartova L, Rajcani J, Pogady J. Herpes simplex virus antibodies in the cerebrospinal fluid of schizophrenic patients. Acta Virol. 1987; 31:443–446.
21). Mayilyan KR, Presanis JS, Arnold JN, Sim RB. Discrete MBL-MA-SP complexes show wide inter-individual variability in concentration: data from UK vs Armenian populations. Int J Immunopathol Pharmacol. 2006; 19:567–580.
crossref
22). Kronfol Z, Remick DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry. 2000; 157:683–694.
crossref
23). Kowalski J, Blada P, Kucia K, Madej A, Herman ZS. Neuroleptics normalize increased release of interleukin-1 beta and tumor necrosis factor-alpha from monocytes in schizophrenia. Schizophr Res. 2001; 50:169–175.
24). Cazzullo CL, Sacchetti E, Galluzzo A, Panariello A, Colombo F, Za-gliani A, et al. Cytokine profiles in drug-naive schizophrenic patients. Schizophr Res. 2001; 47:293–298.
crossref
25). Kim YK, Lee MS, Suh KY. Decreased interleukin-2 production in korean schizophrenic patients. Biol psychiatry. 1998; 43:701–704.
crossref
26). Ganguli R, Brar JS, Solomon W, Chengappa KN, Rabin BS. Altered interleukin-2 production in schizophrenia: association between clinical state and autoantibody production. Psychiatry Res. 1992; 44:113–123.
crossref
27). Gaughran F, O'Neill E, Cole M, Collins K, Daly RJ, Shanahan F. Increased soluble interleukin 2 receptor levels in schizophrenia. Schizophr Res. 1998; 29:263–267.
crossref
28). Cazzullo CL, Scarone S, Grassi B, Vismara C, Trabattoni D, Cler-ici M. Cytokines production in chronic schizophrenia patients with or without paranoid behaviour. Prog Neuropsychopharmacol Biol Psychiatry. 1998; 22:947–957.
crossref
29). Monteleone P, Fabrazzo M, Tortorella A, Maj M. Plasma levels of interleukin-6 and tumor necrosis factor alpha in chronic schizophrenia: effects of clozapine treatment. Psychiatry Res. 1997; 71:11–17.
crossref
30). Sacchetti E, Bocchio-Chiavetto L, Valsecchi P, Scassellati C, Pas-qualetti P, Bonvicini C, et al. -G308a tumor necrosis factor alpha functional polymorphism and schizophrenia risk: metaanalysis plus association study. Brain Behav Immun. 2007; 21:450–457.
crossref
31). Czerski PM, Rybakowski F, Kapelski P, Rybakowski JK, Dmitrzak-Weglarz M, Leszczyńska-Rodziewicz A, et al. Association of tumor necrosis factor -308G/A promoter polymorphism with schizophrenia and bipolar affective disorder in a polish population. Neuropsy-chobiology. 2008; 57:88–94.
32). Bishnoi M, Chopra K, Kulkarni SK. Differential striatal levels of T-NF-α, NFκB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32:1473–1478.
crossref
33). Kim IS, Yoon HK, Kang SG, Park YM, Kim YK, Kim SH, et al. No association between PAWR gene polymorphisms and tardive dyskinesia in schizophrenia patients. Psychiatry Investig. 2012; 9:191–194.
crossref
34). Schooler NR, Kane JM. Research diagnoses for tardive dyskinesia. Arch Gen Psychiatry. 1982; 39:486–487.
crossref
35). Maier SF, Watkins LR. Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev. 1998; 105:83–107.
crossref
36). Capuron L, Lamarque D, Dantzer R, Goodall G. Attentional and mnemonic deficits associated with infectious disease in humans. Psychol Med. 1999; 29:291–297.
crossref
37). Yirmiya R, Weidenfeld J, Pollak Y, Morag M, Morag A, Avitsur R, et al. Cytokines, “depression due to a general medical condition,” and antidepressant drugs. Adv Exp Med Biol. 1999; 461:283–316.
crossref
38). Marx CE, Jarskog LF, Lauder JM, Lieberman JA, Gilmore JH. Cytokine effects on cortical neuron MAP-2 immunoreactivity: implications for schizophrenia. Biol Psychiatry. 2001; 50:743–749.
crossref
39). Boin F, Zanardini R, Pioli R, Altamura CA, Maes M, Gennarelli M. Association between -G308a tumor necrosis factor alpha gene polymorphism and schizophrenia. Mol Psychiatry. 2001; 6:79–82.
crossref
40). Kamińska T, Szuster-Ciesielska A, Wysocka A, Marmurowska-Mi-chałowska H, Dubas-Slemp H, Kandefer-Szerszeń M. Serum cytokine level and production of reactive oxygen species (ROS) by blood neutrophils from a schizophrenic patient with hypersensitivity to neuroleptics. Med Sci Monit. 2003; 9:CS71–CS75.

Table 1.
Comparison of the genotype and allele frequencies of TNF-α between schizophrenic patients with and without TD
Genotype
Allele frequencies
AA AG GG A G
Schizophrenia with TD (n=105) 1 (0.9%) 22 (21.0%) 82 (78.1%) χ2=0.33 0.11 0.89 χ2=0.28
Schizophrenia without TD (n=175) 1 (0.5%) 33 (18.9%) 141 (80.6%) p=0.848 0.10 0.90 p=0.594

TNF : Tumor necrosis factor, TD : Tardive dyskinesia

TOOLS
Similar articles