Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Journal List > Lab Med Online > v.4(1) > 1057257

Apple and Collinson: Analytical Characteristics of High-Sensitivity Cardiac Troponin Assays

Abstract

Background

Cardiac troponins I (cTnI) and T (cTnT) have received international endorsement as the standard biomarkers for detection of myocardial injury, for risk stratification in patients suspected of acute coronary syndrome, and for the diagnosis of myocardial infarction. An evidence-based clinical database is growing rapidly for high-sensitivity (hs) troponin assays. Thus, clarifications of the analytical principles for the immunoassays used in clinical practice are important.

Content

The purpose of this mini-review is (a) to provide a background for the biochemistry of cTnT and cTnI and (b) to address the following analytical questions for both hs cTnI and cTnT assays: (i) How does an assay become designated hs? (ii) How does one realistically define healthy (normal) reference populations for determining the 99th percentile? (iii) What is the usual biological variation of these analytes? (iv) What assay imprecision characteristics are acceptable? (v) Will standardization of cardiac troponin assays be attainable?

Summary

This review raises important points regarding cTnI and cTnT assays and their reference limits and specifically addresses hs assays used to measure low concentrations (nanograms per liter or picograms per milliliter). Recommendations are made to help clarify the nomenclature. The review also identifies further challenges for the evolving science of cardiac troponin measurement. It is hoped that with the introduction of these concepts, both laboratorians and clinicians can develop a more unified view of how these assays are used worldwide in clinical practice.

Go to : Goto

References

1. Thygesen K, Alpert JS, White HD, on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Eur Heart J. 2007; 28:2525–38.
2. Morrow DA, Cannon CP, Jesse RL, Newby LK, Ravkilde J, Storrow AB, et al. National Academy of Clinical Biochemistry practice guidelines: clinical characteristics and utilization of biomarkers in acute coronary syndromes. Clin Chem. 2007; 53:552–74.
3. Apple FS, Jesse RL, Newby LK, Wu AHB, Christenson RH. National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage laboratory medicine practice guidelines: analytical issues for biomarkers of acute coronary syndromes. Clin Chem. 2007; 53:547–51.
4. Jaffe AS, Apple FS. High-sensitive cardiac troponin: hype, help and reality. Clin Chem. 2010; 56:342–4.
5. Reichlin T, Irfan A, Twerenbold R, Reiter M, Hochholzer W, Burkhalter H, et al. Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. Circulation. 2011; 124:136–45.
crossref
6. de Lemos JA, Drazner MH, Omland T, Ayers CR, Khera A, Rohatgi A, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010; 304:2503–12.
crossref
7. de Flippi CR, de Lemos JA, Christenson RH, Gottdiener JS, Kop WJ, Zhan M, et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010; 304:2494–502.
crossref
8. Venge P, Johnston N, Lindahl B, James S. Normal plasma levels of cardiac troponin I measured by the high-sensitivity cardiac troponin I Access prototype assay and the impact on the diagnosis of myocardial ischemia. J Am Coll Cardiol. 2009; 54:1165–72.
crossref
9. Apple FS. A new season for cardiac troponin assays: It's time to keep a scorecard. Clin Chem. 2009; 55:1303–6.
crossref
10. Gaze DC, Collinson PO. Multiple molecular forms of circulating cardiac troponin: analytical and clinical significance. Ann Clin Biochem. 2008; 45:349–55.
crossref
11. Ricchiuti V, Voss EM, Ney A, Odland M, Anderson PA, Apple FS. Cardiac troponin T isoforms expressed in renal diseased skeletal muscle will not cause false-positive results by the second generation cardiac troponin T assay by Boehringer Mannheim. Clin Chem. 1998; 44:1919–24.
crossref
12. Jaffe AS, Vasile VC, Milone M, Saenger AK, Olson KN, Apple FS. Diseased skeletal muscle: a noncardiac source for increased circulating concentrations of cardiac troponin T. J Am Coll Cardiol. 2011; 58:1819–24.
13. Voss EM, Sharkey SW, Gernert AE, Murakami MM, Johnston RB, Hsieh CC, Apple FS. Human and canine cardiac troponin T and creatine kinase-MB distribution in normal and diseased myocardium. Infarct sizing using serum profiles. Arch Pathol Lab Med. 1995; 119:799–806.
14. White HD. Pathobiology of troponin elevations: Do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol. 2011; 57:2406–8.
15. Katus HA, Remppis A, Scheffold T, Diederich KW, Kuebler W. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am J Cardiol. 1991; 67:1360–7.
crossref
16. Wu AH, Feng YJ, Moore R, Apple FS, McPherson PH, Buechler KF, Bodor G, for the American Association for Clinical Chemistry Subcommittee for, and Clinical Chemistry Subcommittee on cTnI Standardization. Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. Clin Chem. 1998; 44:1198–208.
17. Michielsen EC, Diris JH, Wodzig WK, Dieijen-Visser MP. Size-exclusion chromatography of circulating cardiac troponin T. Clin Chem. 2006; 52:2306–7.
crossref
18. Saenger AK, Beyrau R, Braun S, Cooray R, Dolci A, Freidank H, et al. Multicenter analytical evaluation of a high-sensitivity troponin T assay. Clin Chim Acta. 2011; 412:748–54.
crossref
19. Hallermayer K, Klenner D, Vogel R. Use of recombinant human cardiac troponin T for standardization of third generation troponin T methods. Scand J Clin Lab Invest Suppl. 1999; 230:128–31.
crossref
20. Katrukha A, Bereznikova A, Filatov V, Esakova T. Biochemical factors influencing measurement of cardiac troponin I in serum. Clin Chem Lab Med. 1999; 37:1091–5.
crossref
21. Adams JE, Bodor GS, Davila-Roman VG, Delmez JA, Apple FS, Ladenson JH, Jaffe AS. Cardiac troponin I: a marker with high specificity for cardiac injury. Circulation. 1993; 88:101–6.
crossref
22. Cummins B, Auckland ML, Cummins P. Cardiacspecific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J. 1987; 113:1333–44.
23. Christenson RH, Duh SH, Apple FS, Bodor G, Bunk D, Dalluge J, et al. Standardization of cardiac troponin I assays: round robin performance of ten candidate reference materials. Clin Chem. 2001; 47:431–7.
24. Tate JR, Bunk DM, Christenson RH, Katrukha A, Noble JE, Porter RA, et al. Standardisation of cardiac troponin I measurement: past and present. Pathology. 2010; 42:402–8.
crossref
25. Katrukha AG, Bereznikova AV, Filatov VL, Esakova TV, Kolosova V, Pettersson K, et al. Degradation of cardiac troponin I: implication for reliable immunodetection. Clin Chem. 1998; 44:2433–40.
crossref
26. Katrukha AG, Bereznikova AV, Esakova TV, Pettersson K, Lovgren T, Severina ME, et al. Troponin I is released in bloodstream of patients with acute myocardial infarction not in free form but as complex. Clin Chem. 1997; 43:1379–85.
27. Eriksson S, Halenius H, Pulkki K, Hellman J, Pettersson K. Negative interference in cardiac troponin I immunoassays by circulating troponin autoantibodies. Clin Chem. 2005; 51:839–47.
crossref
28. HyTest Ltd. Troponins. http://www.troponins.com/troponins. (Accessed July 2011).
29. Giannitsis E, Kurz K, Hallermayer K, Jarausch J, Jaffe AS, Katus HA. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem. 2010; 56:254–61.
crossref
30. Collinson PO, Heung YM, Gaze D, Boa F, Senior R, Christenson R, Apple FS. Influence of population selection on the 99th percentile reference value for cardiac troponin assays. Clin Chem. 2012; 58:219–25.
crossref
31. de Lemos JA, McGuire DK, Khera A, Das SR, Murphy SA, Omland T, Drazner MH. Screening the population for left ventricular hypertrophy and left ventricular systolic dysfunction using natriuretic peptides: results from the Dallas Heart Study. Am Heart J. 2009; 157:746–53.
crossref
32. Apple FS, Simpson PA, Murakami MM. Defining the serum 99th percentile in a normal reference population measured by a high-sensitivity cardiac troponin I assay. Clin Biochem. 2010; 43:1034–6.
crossref
33. Apple FS, Murakami MM. Serum and plasma cardiac troponin I 99th percentile reference values for 3 2nd-generation assays. Clin Chem. 2007; 53:1558–60.
crossref
34. Collinson PO, Clifford-Mobley O, Gaze D, Boa F, Senior R. Assay imprecision and 99th-percentile reference value of a high-sensitivity cardiac troponin I assay. Clin Chem. 2009; 55:1433–4.
crossref
35. Wu AHB, Quynh AL, Todd J, Moecks J, Wians F. Short- and longterm biological variation in cardiac troponin I measured with a high-sensitivity assay: implications for clinical practice. Clin Chem. 2009; 55:528.
crossref
36. Vasile VC, Saenger AK, Kroning JM, Jaffe AS. Biological and analytical variability of a novel high-sensitivity cardiac troponin T assay. Clin Chem. 2010; 56:1086–90.
crossref
37. Frankenstein L, Wu AHB, Hallermayer K, Wians FH Jr, Giannitsis E, Katus HA. Biological variation and reference change value of high-sensitivity troponin T in healthy individuals during short and intermediate follow-up periods. Clin Chem. 2011; 57:1068–71.
crossref
38. Apple FS, Murakami MM, Wians FH, Ler R, Kaczmarek JM, Wu AHB. Short-term biological variation of cardiac troponin I measured with three high-sensitivity assays [Abstract]. Clin Chem. 2011; 57:C05.
39. Apple FS, Parvin CA, Buechler KF, Christenson RH, Wu AHB, Jaffe AS. Validation of the 99th percentile cutoff independent of assay imprecision (CV) for cardiac troponin monitoring for ruling out myocardial infarction. Clin Chem. 2005; 51:2198–200.
crossref
40. zKupchak P, Wu AHB, Ghani F, Newby K, Ohman EM, Christenson RH. Influence of imprecision on ROC curve analysis for cardiac markers. Clin Chem. 2006; 52:752–3.
Go to : Goto

lmo-4-55f1.tif
Fig. 1.
Cardiac troponin I epitopes that are prone to interference. Ada pted from HyTest Ltd. [28].
undefined
Table 1.
Analytical characteristics of contemporary sensitive and point-of-care cardiac troponin assays.
Company/platform/assay Cardiac troponin concentration at: Amino acid residues of epitopes recognized by capture (C) and detection (D) MAbs
LoD (μg/L) 99th Percentile (μg/L, CV) 10% CV concentration (μg/L)
Abbott AxSYM ADV 0.02 0.04 (14) 0.16 C: 87–91, 41–49; D: 24–40
Abbott ARCHITECT 0.009 0.028 (14) 0.032 C: 87–91, 24–40; D: 41–49
Abbott i-STAT 0.02 0.08 (16.5) 0.10 C: 41–49, 88–91; D: 28–39, 62–78
Alere Triage 0.05 <0.05 (NA) NA C: NA; D: 27–40
Alere Triage Cardio3 0.01 0.02 (17) NA C: 27–39; D: 83–93, 190–196
Beckman Access AccuTnI 0.01 0.04 (14) 0.06 C: 41–49; D: 24–40
bioMérieux Vidas Ultra 0.01 0.01 (27.7) 0.11 C: 41–49, 22–29; D: 87–91, MAb 7B9
Mitsubishi Pathfast 0.008 0.029 (5.0) 0.014 C: 41–49; D: 71–116, 163–209
Ortho Vitros ECi ES 0.012 0.034 (10) 0.034 C: 24–40, 41–49; D: 87–91
Radiometer AQT90 cTnI 0.009 0.023 (17.7) 0.039 C: 41–49, 190–196; D: 137–149
Radiometer AQT90 cTnT 0.008 0.017 (15.2) 0.026 C: 125–131; D: 136–147
Response RAMP 0.03 <0.01 (18.5 at 0.05) 0.21 C: 85–92; D: 26–38
Roche cobas h232 Cardiac T†,‡ 0.05 NA NA C: 125–131; D: 136–147
Roche Elecsys TnT Gen 4 0.01 <0.01 0.030 C: 136–147; D: 125–131
Roche Elecsys TnI 0.16 0.16 (10) 0.30 C: 87–91, 190–196; D: 23–29, 27–43
Roche Cardiac Reader cTnT§ 0.03 NA NA C: 125–131; D: 136–147
Siemens Centaur Ultra 0.006 0.04 (8.8) 0.03 C: 41–49, 87–91; D: 27–40
Siemens Dimension RxL 0.04 0.07 (20) 0.14 C: 27–32; D: 41–56
Siemens Immulite 2500 0.1 0.2 (NA) 0.42 C: 87–91; D: 27–40
Siemens Stratus CS 0.03 0.07 (10) 0.06 C: 27–32; D: 41–56
Siemens Vista 0.015 0.045 (10) 0.04 C: 27–32; D: 41–56
Tosoh AIA 0.06 <0.06 (NA) 0.09 C: 41–49; D: 87–91

CV at 99th percentile;

Not cleared by the US Food and Drug Administration;

Standardized against hs-cTnT assay;

§ Standardized against Gen 4 cTnT assay. Abbreviations: LoD, limit of detection; NA, not available; Gen 4, fourth-generation assay.

Table 2.
Analytical characteristics of hs cardiac troponin assays.
Company/ platform/assay Cardiac troponin concentration at: Amino acid residues of epitopes recognized by capture (C) and detection (D) MAbs
LoD (ng/L) 99th Percentile (ng/L, CV) 10% CV concentration (ng/L)
hs-cTnI        
Abbott ARCHITECT 1.2 16 (5.6) 3.0 C: 24–40; D: 41–49
Beckman Access 2–3 8.6 (10) 8.6 C: 41–49; D: 24–40
Nanosphere MTP 0.2 2.8 (9.5) 0.5 C: 136–147; D: MAb PA1010
Singulex Erenna 0.09 10.1 (9.0) 0.88 C: 41–49; D: 27–41
Siemens Vista 0.5 9 (5.0) 3 C: 30–35; D: 41–56, 171–190
hs-cTnT        
Roche Elecsys 5.0 14 (8) 13 C: 136–147; D: 125–131

CV at the 99th percentile;

Under development and not available for commercial use;

Available for use worldwide but not cleared by the US Food and Drug Administration for use in the US. Abbreciations: LoD, limit of detection; MTP, microtiter plate.

Table 3.
Short-term analytical and biological variation by hs-cTnI assays.
  Abbott Beckman Roche (E170) Siemens Singulex
CV-A (%) 13.8 14.5 7.8 13.0 8.3
CV-I (%) 15.2 6.1 15.0 12.9 9.7
CV-G (%) 70.5 34.8 NA 12.3 57
Index of individuality 0.22 0.46 NA 0.11 0.21
RCV (%)§ NA NA 47.0 NA NA
RCV increase (%)II 69.3 63.8 NA 57.5 46.0
RCV decrease (%)II –40.9 –38.9 NA –36.5 –32
Within-individual mean (ng/L) 3.5 4.9 NA 5.5 2.8

Apple et al. [38];

Vasile et al. [36];

Wu et al. [35];

§ RCV percentage applies to the parametric data;

II RCV increase and decrease percentages refer to nonparametric data and are log-transformed.

Abbreciations: CV-A, analytical CV; CV-I, within-individual CV; CV-G, between-individual CV; NA, not available; RCV, relative change value.

TOOLS
Similar articles