Abstract
In the last decade, conventional diagnosis of thyroid nodules largely depended on fine-needle aspiration (FNA) and ultrasound. However, FNA has a limited ability to distinguish between benign and malignant lesions, especially in cases with indeterminate cytology. Although the clinical course of differentiated thyroid carcinoma is believed to be favorable, delayed diagnosis can make its clinical management difficult. Many immunohistochemical (IHC) or molecular adjunctive markers have been tested to improve the diagnostic accuracy for thyroid nodules. The common IHC markers galectin-3, Hector Battifora mesothelial-1, and cytokeratin-19 are used alone or as part of panels for both FNA and analysis of surgical specimens. A novel IHC marker, podoplanin, was recently introduced as an adjunctive marker for thyroid cancer diagnosis and prognosis and is associated with the progression of papillary thyroid carcinoma (PTC). Several researchers have identified molecular markers to increase the diagnostic accuracy of thyroid lesions of undetermined significance. Four promising molecular markers have been proposed and thoroughly investigated: B-type Raf kinase (BRAF) and RAS, rearranged in transformation/PTC (RET/PTC), paired box gene 8 (Pax8)/peroxisome proliferator-activated receptor gamma (PPAR γ). BRAF mutations can be measured by immunohistochemistry using an antibody specific to the mutated protein. In this review, we focused on the limitations of current diagnostic tools and on determining the application of the above-mentioned markers to thyroid nodule diagnosis.
References
1. Fallahi P, Giannini R, Miccoli P, Antonelli A, Basolo F. Molecular diagnostics of fine needle aspiration for the pre-surgical screening of thyroid nodules. Curr Genomics. 2014; 15(3):171–7.
2. Cheung CC, Ezzat S, Freeman JL, Rosen IB, Asa SL. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol. 2001; 14(4):338–42.
3. Fischer S, Asa SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med. 2008; 132(3):359–72.
4. Griffith OL, Chiu CG, Gown AM, Jones SJ, Wiseman SM. Biomarker panel diagnosis of thyroid cancer: a critical review. Expert Rev Anticancer Ther. 2008; 8(9):1399–413.
5. Singer PA, Cooper DS, Daniels GH, Ladenson PW, Greenspan FS, Levy EG. et al. Treatment guidelines for patients with thyroid nodules and well-differentiated thyroid cancer. American Thyroid Association. Arch Intern Med. 1996; 156(19):2165–72.
6. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009; 19(11):1167–214.
7. Gasbarri A, Marchetti C, Iervasi G, Bottoni A, Nicolini A, Bartolazzi A. et al. From the bench to the bedside. Galectin-3 immunodetection for improving the preoperative diagnosis of the follicular thyroid nodules. Biomed Pharmacother. 2004; 58(6-7):356–9.
8. Rodrigues HG, de Pontes AA, Adan LF. Use of molecular markers in samples obtained from preoperative aspiration of thyroid. Endocr J. 2012; 59(5):417–24.
9. Park YJ, Kwak SH, Kim DC, Kim H, Choe G, Park DJ. et al. Diagnostic value of galectin-3, HBME-1, cytokeratin 19, high molecular weight cytokeratin, cyclin D1 and p27(kip1) in the differential diagnosis of thyroid nodules. J Korean Med Sci. 2007; 22(4):621–8.
10. Vriens MR, Schreinemakers JM, Suh I, Guerrero MA, Clark OH. Diagnostic markers and prognostic factors in thyroid cancer. Future Oncol. 2009; 5(8):1283–93.
11. de Matos LL, Del Giglio AB, Matsubayashi CO, de Lima Farah M, Del Giglio A, da Silva Pinhal MA. Expression of CK-19, galectin-3 and HBME-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagn Pathol. 2012; 7:97.
12. Yasuoka H, Nakamura Y, Zuo H, Tang W, Takamura Y, Miyauchi A. et al. VEGF-D expression and lymph vessels play an important role for lymph node metastasis in papillary thyroid carcinoma. Mod Pathol. 2005; 18(8):1127–33.
13. Scarpino S, Di Napoli A, Melotti F, Talerico C, Cancrini A, Ruco L. Papillary carcinoma of the thyroid: low expression of NCAM (CD56) is associated with downregulation of VEGF-D production by tumour cells. J Pathol. 2007; 212(4):411–9.
14. Rudzinska M, Gawel D, Sikorska J, Karpinska KM, Kiedrowski M, Stepien T. et al. The role of podoplanin in the biology of differentiated thyroid cancers. PLoS One. 2014; 9(5):e96541.
15. Shindo K, Aishima S, Ohuchida K, Fujino M, Mizuuchi Y, Hattori M. et al. Podoplanin expression in the cyst wall correlates with the progression of intraductal papillary mucinous neoplasm. Virchows Arch. 2014; 465(3):265–73.
16. Hapke MR, Dehner LP. The optically clear nucleus. A reliable sign of papillary carcinoma of the thyroid? Am J Surg Pathol. 1979; 3(1):31–8.
17. Miettinen M, Karkkainen P. Differential reactivity of HBME-1 and CD15 antibodies in benign and malignant thyroid tumours. Preferential reactivity with malignant tumours. Virchows Arch. 1996; 429(4-5):213–9.
18. Chiu CG, Strugnell SS, Griffith OL, Jones SJ, Gown AM, Walker B. et al. Diagnostic utility of galectin-3 in thyroid cancer. Am J Pathol. 2010; 176(5):2067–81.
19. Herrmann ME, LiVolsi VA, Pasha TL, Roberts SA, Wojcik EM, Baloch ZW. Immunohistochemical expression of galectin-3 in benign and malignant thyroid lesions. Arch Pathol Lab Med. 2002; 126(6):710–3.
20. Kovacs RB, Foldes J, Winkler G, Bodo M, Sapi Z. The investigation of galectin-3 in diseases of the thyroid gland. Eur J Endocrinol. 2003; 149(5):449–53.
21. Cvejic DS, Savin SB, Petrovic IM, Paunovic IR, Tatic SB, Havelka MJ. Galectin-3 expression in papillary thyroid carcinoma: relation to histomorphologic growth pattern, lymph node metastasis, extrathyroid invasion, and tumor size. Head Neck. 2005; 27(12):1049–55.
22. Bartolazzi A, Gasbarri A, Papotti M, Bussolati G, Lucante T, Khan A. et al. Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Lancet. 2001; 357(9269):1644–50.
23. Fernandez PL, Merino MJ, Gomez M, Campo E, Medina T, Castronovo V. et al. Galectin-3 and laminin expression in neoplastic and non-neoplastic thyroid tissue. J Pathol. 1997; 181(1):80–6.
24. Maruta J, Hashimoto H, Yamashita H, Yamashita H, Noguchi S. Immunostaining of galectin-3 and CD44v6 using fine-needle aspiration for distinguishing follicular carcinoma from adenoma. Diagn Cytopathol. 2004; 31(6):392–6.
25. Sethi K, Sarkar S, Das S, Mohanty B, Mandal M. Biomarkers for the diagnosis of thyroid cancer. J Exp Ther Oncol. 2010; 8(4):341–52.
26. Wallander M, Layfield LJ, Jarboe E, Emerson L, Liu T, Thaker H. et al. Follicular variant of papillary carcinoma: reproducibility of histologic diagnosis and utility of HBME-1 immunohistochemistry and BRAF mutational analysis as diagnostic adjuncts. Appl Immunohistochem Mol Morphol. 2010; 18(3):231–5.
27. Erickson LA, Lloyd RV. Practical markers used in the diagnosis of endocrine tumors. Adv Anat Pathol. 2004; 11(4):175–89.
28. Rezk S, Khan A. Role of immunohistochemistry in the diagnosis and progression of follicular epithelium-derived thyroid carcinoma. Appl Immunohistochem Mol Morphol. 2005; 13(3):256–64.
29. Saggiorato E, De Pompa R, Volante M, Cappia S, Arecco F, Dei Tos AP. et al. Characterization of thyroid ‘follicular neoplasms’ in fine-needle aspiration cytological specimens using a panel of immunohistochemical markers: a proposal for clinical application. Endocr Relat Cancer. 2005; 12(2):305–17.
30. Choi YL, Kim MK, Suh JW, Han J, Kim JH, Yang JH. et al. Immunoexpression of HBME-1, high molecular weight cytokeratin, cytokeratin 19, thyroid transcription factor-1, and E-cadherin in thyroid carcinomas. J Korean Med Sci. 2005; 20(5):853–9.
31. Mase T, Funahashi H, Koshikawa T, Imai T, Nara Y, Tanaka Y. et al. HBME-1 immunostaining in thyroid tumors especially in follicular neoplasm. Endocr J. 2003; 50(2):173–7.
32. Papotti M, Rodriguez J, De Pompa R, Bartolazzi A, Rosai J. Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol. 2005; 18(4):541–6.
33. Prasad ML, Pellegata NS, Huang Y, Nagaraja HN, de la Chapelle A, Kloos RT. Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol. 2005; 18(1):48–57.
34. Rossi ED, Raffaelli M, Minimo C, Mule A, Lombardi CP, Vecchio FM. et al. Immunocytochemical evaluation of thyroid neoplasms on thin-layer smears from fine-needle aspiration biopsies. Cancer. 2005; 105(2):87–95.
35. Cerilli LA, Mills SE, Rumpel CA, Dudley TH, Moskaluk CA. Interpretation of RET immunostaining in follicular lesions of the thyroid. Am J Clin Pathol. 2002; 118(2):186–93.
36. Baloch ZW, Abraham S, Roberts S, LiVolsi VA. Differential expression of cytokeratins in follicular variant of papillary carcinoma: an immunohistochemical study and its diagnostic utility. Hum Pathol. 1999; 30(10):1166–71.
37. Sahoo S, Hoda SA, Rosai J, DeLellis RA. Cytokeratin 19 immunoreactivity in the diagnosis of papillary thyroid carcinoma: a note of caution. Am J Clin Pathol. 2001; 116(5):696–702.
39. Rorive S, Eddafali B, Fernandez S, Decaestecker C, Andre S, Kaltner H. et al. Changes in galectin-7 and cytokeratin-19 expression during the progression of malignancy in thyroid tumors: diagnostic and biological implications. Mod Pathol. 2002; 15(12):1294–301.
40. Nasser SM, Pitman MB, Pilch BZ, Faquin WC. Fine-needle aspiration biopsy of papillary thyroid carcinoma: diagnostic utility of cytokeratin 19 immunostaining. Cancer. 2000; 90(5):307–11.
41. Koperek O, Kornauth C, Capper D, Berghoff AS, Asari R, Niederle B. et al. Immunohistochemical detection of the BRAF V600E-mutated protein in papillary thyroid carcinoma. Am J Surg Pathol. 2012; 36(6):844–50.
42. Kim HS, Kim JO, Lee DH, Lee HC, Kim HJ, Kim JH. et al. Factors influencing the detection of the BRAF T1799A mutation in papillary thyroid carcinoma. Oncol Rep. 2011; 25(6):1639–44.
43. Kim SK, Kim DL, Han HS, Kim WS, Kim SJ, Moon WJ. et al. Pyrosequencing analysis for detection of a BRAFV600E mutation in an FNAB specimen of thyroid nodules. Diagn Mol Pathol. 2008; 17(2):118–25.
44. Lima J, Trovisco V, Soares P, Maximo V, Magalhaes J, Salvatore G. et al. BRAF mutations are not a major event in post-Chernobyl childhood thyroid carcinomas. J Clin Endocrinol Metab. 2004; 89(9):4267–71.
45. Wicki A, Christofori G. The potential role of podoplanin in tumour invasion. Br J Cancer. 2007; 96(1):1–5.
46. Kim MI, Alexander EK. Diagnostic use of molecular markers in the evaluation of thyroid nodules. Endocr Pract. 2012; 18(5):796–802.
47. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL. et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011; 96(11):3390–7.
48. Bartolazzi A, Orlandi F, Saggiorato E, Volante M, Arecco F, Rossetto R. et al. Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. Lancet Oncol. 2008; 9(6):543–9.
49. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J. et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012; 367(8):705–15.
50. Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell. 2004; 6(4):313–9.
51. Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid. 2010; 20(7):697–706.
52. Kebebew E, Weng J, Bauer J, Ranvier G, Clark OH, Duh QY. et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg. 2007; 246(3):466–70. discussion 470-1.
53. Cohen Y, Rosenbaum E, Clark DP, Zeiger MA, Umbricht CB, Tufano RP. et al. Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res. 2004; 10(8):2761–5.
54. Nikiforova MN, Nikiforov YE. Molecular diagnostics and predictors in thyroid cancer. Thyroid. 2009; 19(12):1351–61.
55. Kouniavsky G, Zeiger MA. The quest for diagnostic molecular markers for thyroid nodules with indeterminate or suspicious cytology. J Surg Oncol. 2012; 105(5):438–43.
56. Chung KW, Yang SK, Lee GK, Kim EY, Kwon S, Lee SH. et al. Detection of BRAFV600E mutation on fine needle aspiration specimens of thyroid nodule refines cyto-pathology diagnosis, especially in BRAF600E mutation-prevalent area. Clin Endocrinol (Oxf). 2006; 65(5):660–6.
57. Kim SK, Hwang TS, Yoo YB, Han HS, Kim DL, Song KH. et al. Surgical results of thyroid nodules according to a management guideline based on the BRAF(V600E) mutation status. J Clin Endocrinol Metab. 2011; 96(3):658–64.
58. Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ. et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005; 90(12):6373–9.
59. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007; 28(7):742–62.
60. Xing M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol. 2010; 321(1):86–93.
61. Xing M, Haugen BR, Schlumberger M. Progress in molecular-based management of differentiated thyroid cancer. Lancet. 2013; 381(9871):1058–69.
62. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B. et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013; 309(14):1493–501.
63. Ciampi R, Nikiforov YE. RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology. 2007; 148(3):936–41.
64. Cheung CC, Carydis B, Ezzat S, Bedard YC, Asa SL. Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J Clin Endocrinol Metab. 2001; 86(5):2187–90.
65. Pizzolanti G, Russo L, Richiusa P, Bronte V, Nuara RB, Rodolico V. et al. Fine-needle aspiration molecular analysis for the diagnosis of papillary thyroid carcinoma through BRAF V600E mutation and RET/PTC rearrangement. Thyroid. 2007; 17(11):1109–15.
66. Ishizaka Y, Kobayashi S, Ushijima T, Hirohashi S, Sugimura T, Nagao M. Detection of retTPC/PTC transcripts in thyroid adenomas and adenomatous goiter by an RT-PCR method. Oncogene. 1991; 6(9):1667–72.
67. Repasky GA, Chenette EJ, Der CJ. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras on-cogenesis? Trends Cell Biol. 2004; 14(11):639–47.
68. Basolo F, Pisaturo F, Pollina LE, Fontanini G, Elisei R, Molinaro E. et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid. 2000; 10(1):19–23.
69. Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T, Sobrinho LG. et al. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 2002; 87(8):3947–52.
70. Sahin M, Allard BL, Yates M, Powell JG, Wang XL, Hay ID. et al. PPARgamma staining as a surrogate for PAX8/PPAR gamma fusion oncogene expression in follicular neoplasms: clinicopathological correlation and histopathological diagnostic value. J Clin Endocrinol Metab. 2005; 90(1):463–8.
71. Weber KB, Shroyer KR, Heinz DE, Nawaz S, Said MS, Haugen BR. The use of a combination of galectin-3 and thyroid peroxidase for the diagnosis and prognosis of thyroid cancer. Am J Clin Pathol. 2004; 122(4):524–31.
72. Oestreicher-Kedem Y, Halpern M, Roizman P, Hardy B, Sulkes J, Feinmesser R. et al. Diagnostic value of galectin-3 as a marker for malignancy in follicular patterned thyroid lesions. Head Neck. 2004; 26(11):960–6.
73. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G. et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003; 88(5):2318–26.