Journal List > J Korean Acad Conserv Dent > v.34(6) > 1056392

Kong, Choi, Park, Lee, and Choi: Gene expression of human coronary artery endothelial cells in response to Porphyromonas endodontalis invasion

Abstract

During the last two decades, there has been an increasing interest in the impact of oral health on atherosclerosis and subsequent cardiovascular disease (CVD). To date, some periodontal pathogens including Porphyromonas gingivalis (P. gingivalis) have been reported to be relevant to CVD. Porphyromonas endodontalis (P. endodontalis), which shares approximately 87% sequence homology with P. gingivalis, is mostly found within infected root canals. However, recent studies reveal that this pathogen also resides in the dental plaque or periodontal pocket in patients with periodontitis. It has been shown that P. endodontalis invades human coronary artery endothelial cells (HCAEC) and coronary artery smooth muscle cells (CASMC). To evaluate whether P. endodontalis can participate in the progression of atherosclerosis and CVD, we examined the changes in transcriptional gene expression profiles of HCAEC responding to invasion by P. endodontalis in this study.
The following results were obtained.
  1. Porphyromonas endodontalis was invasive of HCAEC.

  2. According to the microarray analysis, there were 625 genes upregulated more than two-folds, while there were 154 genes downregulated by half.

  3. Upregulated genes were relevant to inflammatory cytokines, apoptosis, coagulation and immune response. Enhanced expression of MMP-1 was also noticeable.

  4. The transcription profiles of the 10 selected genes examined by real-time PCR agreed well with those observed in the microarray analysis.

Thus, these results show that P. endodontalis presents the potential to trigger and augment atherosclerosis leading to CVD.

Figures and Tables

Table 1
Primers and product sizes for RT-PCR analysisa
jkacd-34-537-i001

aThe full names of the genes and their UniGene IDs are given in Table 3.

Table 2
Invasion of human coronary artery endothelial cells by P. endodontalis strains
jkacd-34-537-i002

aDefined as the actual number of viable cells of P. endodontalis inoculum as determined by plating method. Bacterial cell suspension was adjusted to optical density of 0.1 at 600nm and 100µl of the suspension was added to each well (1ml) of a 24-well plate.

bDefined as the number and percentage of P. endodontalis cells protected from metronidazole killing, which represents invading bacterial cells, after the infection period. Values are means (± standard deviation) of triplicate.

Table 3
Upregulated genes relevant to CVD including atherosclerosis
jkacd-34-537-i003
Table 4
Comparison of gene expression measured by microarray and real-time PCR
jkacd-34-537-i004
Table 5
Pathway analysis of the significantly upregulated genes
jkacd-34-537-i005

References

1. van Winkelhoff AJ, Carlee AW, de Graaff J. Bacteroides endodontalis and other black-pigmented Bacteroides species in odontogenic abscesses. Infect Immun. 1985. 49(3):494–497.
crossref
2. Seltzer S, Farber PA. Microbiologic factors in endodontology. Oral Surg Oral Med Oral Pathol. 1994. 78(5):634–645.
crossref
3. van Steenbergen TJM, van Winkelhoff AJ, Mayrand D, Grenier D, De Graaff J. Bacteroides endodontalis sp. nov., an asaccharolytic black-pigmented Bacteroides species from infected dental root canals. Int J Syst Bacteriol. 1984. 34(2):118–120.
crossref
4. Hashioka K, Yamasaki M, Nakane A, Horiba N, Nakamura H. The relationship between clinical symptoms and anaerobic bacteria from infected root canals. J Endod. 1992. 18(11):558–561.
crossref
5. Machado de Oliveira JC, Siqueira JF, Alves GB, Hirata R, Andrade AFB. Detection of Porphyromonas endodontalis in infected root canals by 16S rRNA gene-directed polymerase chain reaction. J Endod. 2000. 26(12):729–732.
crossref
6. van Winkelhoff AJ, van Steenbergen TJ, Kippuw N, De Graaff J. Further characterization of Bacteroides endodontalis, an asaccharolytic black-pigmented Bacteroides species from the oral S cavity. J Clin Microbiol. 1985. 22(1):75–79.
crossref
7. Tanner AC, Paster BJ, Lu SC, Kanasi E, Kent R Jr, Van Dyke T, Sonis ST. Subgingival and tongue microbiota during early periodontitis. J Dent Res. 2006. 85(4):318–323.
crossref
8. Kumar PS, Griffen AL, Barton JA, Paster BJ, Moeschberger ML, Leys EJ. New bacterial species associated with chronic periodontitis. J Dent Res. 2003. 82(5):338–344.
crossref
9. Dahlén G, Leonhardt A. A new checkerboard panel for testing bacterial markers in periodontal disease. Oral Microbiol Immunol. 2006. 21(1):6–11.
crossref
10. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999. 340(2):115–126.
11. Lüscher TF, Barton M. Biology of the endothelium. Clin Cardiol. 1997. 20:11 Suppl 2. II3–II10.
crossref
12. Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease. Curr Opin Lipidol. 2001. 12(4):383–389.
crossref
13. Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation. 2004. 109:21 suppl 1. II2–II10.
crossref
14. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002. 105(9):1135–1143.
crossref
15. Lusis AJ. Atherosclerosis. Nature. 2000. 407(6801):233–241.
crossref
16. Libby P. Inflammation in atherosclerosis. Nature. 2002. 420(6917):868–874.
crossref
17. Saikku P, Leinonen M, Tenkanen L, Linnanmäki E, Ekman MR, Manninen V, Mänttäri M, Frick MH, Huttunen JK. Chronic Chlamydia pneumoniae infection as a risk factor for coronary heart disease in the Helsinki Heart Study. Ann Intern Med. 1992. 116(4):273–278.
crossref
18. Mendall MA, Goggin PM, Molineaux N, Levy J, Toosy T, Strachan D, Camm AJ, Northfield TC. Relation of Helicobacter pylori infection and coronary heart disease. Br Heart J. 1994. 71(5):437–439.
19. Hajjar DP, Fabricant CG, Minick CR, Fabricant J. Virus-induced atherosclerosis. Herpesvirus infection alters aortic cholesterol metabolism and accumulation. Am J Pathol. 1986. 122(1):62–70.
20. Epstein SE, Zhu J, Burnett MS, Zhou YF, Vercellotti G, Hajjar D. Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry. Arterioscler Thromb Vasc Biol. 2000. 20(6):1417–1420.
21. Epstein SE. The multiple mechanisms by which infection may contribute to atherosclerosis development and course. Circ Res. 2002. 90(1):2–4.
crossref
22. Espinola-Klein C, Rupprecht HJ, Blankenberg S, Bickel C, Kopp H, Rippin G, Victor A, Hafner G, Schlumberger W, Meyer J. Impact of infectious burden on extent and long-term prognosis of atherosclerosis. Circulation. 2002. 105(1):15–21.
crossref
23. Mattila KJ, Nieminen MS, Valtonen VV, Rasi VP, Kesäniemi YA, Syrjälä SL, Jungell PS, Isoluoma M, Hietaniemi K, Jokinen MJ. Association between dental health and acute myocardial infarction. BMJ. 1989. 298(6676):779–781.
crossref
24. Beck J, Garcia R, Heiss G, Vokonas PS, Offenbacher S. Periodontal disease and cardiovascular disease. J Periodontol. 1996. 67:10 suppl. 1123–1137.
crossref
25. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol. 2000. 71(10):1554–1560.
crossref
26. Spahr A, Klein E, Khuseyinova N, Boeckh C, Muche R, Kunze M, Rothenbacher D, Pezeshki G, Hoffmeister A, Koenig W. Periodontal infections and coronary heart disease: role of periodontal bacteria and importance of total pathogen burden in the Coronary Event and Periodontal Disease (CORODONT) study. Arch Intern Med. 2006. 166(5):554–559.
27. Deshpande RG, Khan MB, Genco CA. Invasion of aortic and heart endothelial cells by Porphyromonas gingivalis. Infect Immun. 1998. 66(11):5337–5343.
crossref
28. Dorn BR, Dunn WA Jr, Progulske-Fox A. Invasion of human coronary artery cells by periodontal pathogens. Infect Immun. 1999. 67(11):5792–5798.
crossref
29. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993. 362(6423):801–809.
crossref
30. Paster BJ, Dewhirst FE, Olsen I, Fraser GJ. Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J Bacteriol. 1994. 176(3):725–732.
crossref
31. Dorn BR, Harris LJ, Wujick CT, Vertucci FJ, Progulske-Fox A. Invasion of vascular cells in vitro by Porphyromonas endodontalis. Int Endod J. 2002. 35(4):366–371.
crossref
32. Gibbons RJ. Bacterial adhesion to oral tissues: a model for infectious diseases. J Dent Res. 1989. 68(5):750–760.
crossref
33. Falkow S. Bacterial entry into eukaryotic cells. Cell. 1991. 65(7):1099–1102.
crossref
34. Pearce E, Tregouet DA, Samnegård A, Morgan AR, Cox C, Hamsten A, Eriksson P, Ye S. Haplotype effect of the matrix metalloproteinase-1 gene on risk of myocardial infarction. Circ Res. 2005. 97(10):1070–1076.
crossref
35. Presta M, Camozzi M, Salvatori G, Rusnati M. Role of the soluble pattern recognition receptor PTX3 in vascular biology. J Cell Mol Med. 2007. 11(4):723–738.
crossref
36. Lee YW, Eum SY, Chen KC, Hennig B, Toborek M. Gene expression profile in interleukin-4-stimulated human vascular endothelial cells. Mol Med. 2004. 10(1-6):19–27.
crossref
37. Ito T, Ikeda U. Inflammatory cytokines and cardiovascular disease. Curr Drug Targets Inflamm Allergy. 2003. 2(3):257–265.
crossref
38. Chou HH, Yumoto H, Davey M, Takahashi Y, Miyamoto T, Gibson FC 3rd, Genco CA. Porphyromonas gingivalis fimbria-dependent activation of inflammatory genes in human aortic endothelial cells. Infect Immun. 2005. 73(9):5367–5378.
crossref
39. Gagarin D, Yang Z, Butler J, Wimmer M, Du B, Cahan P, McCaffrey TA. Genomic profiling of acquired resistance to apoptosis in cells derived from human atherosclerotic lesions: potential role of STATs, cyclinD1, BAD, and Bcl-XL. J Mol Cell Cardiol. 2005. 39(3):453–465.
crossref
40. Fan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM, Greenberg AH, Zhong G. Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med. 1998. 187(4):487–496.
crossref
41. Zhu H, Shen Y, Shenk T. Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J Virol. 1995. 69(12):7960–7970.
crossref
42. Grütter MG. Caspases: key players in programmed cell death. Curr Opin Struct Biol. 2000. 10(6):649–655.
crossref
43. Xu G, Gong Z, Yu W, Gao L, He S, Qian Z. Increased expression ratio of Bcl-2/Bax is associated with crocin-mediated apoptosis in bovine aortic endothelial cells. Basic Clin Pharmacol Toxicol. 2007. 100(1):31–35.
crossref
44. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998. 281(5381):1322–1326.
crossref
45. Toutouzas K, Androulakis G, Chatzigianni E, Davaris PS, Karayannis M, Konstadoulakis MM, Messaris E. Expression of c-myc and H-ras and absence of expression of p53 and bcl-2 genes in atherosclerotic human carotid arteries. J Clin Basic Cardiol. 2002. 5(3):253–256.
46. Dimmeler S, Breitschopf K, Haendeler J, Zeiher AM. Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J Exp Med. 1999. 189(11):1815–1822.
crossref
47. Jung IK, Kim DM, Kim BY, Kim YG, Kim IJ, Kim TH, Park JY, Son SM, Yoo HJ, Lee MK, Lee BY, Lee IK, Cha BY. NF-kB and atherosclerosis. Biowave. 2007. 9(7):1–13.
48. Esemuede N, Lee T, Pierre-Paul D, Sumpio BE, Gahtan V. The role of thrombospondin-1 in human disease. J Surg Res. 2004. 122(1):135–142.
49. Vischer UM. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost. 2006. 4(6):1186–1193.
crossref
50. Dadgostar H, Zarnegar B, Hoffmann A, Qin XF, Truong U, Rao G, Baltimore D, Cheng G. Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes. Proc Natl Acad Sci USA. 2002. 99(3):1497–1502.
crossref
51. Mach F, Schönbeck U, Libby P. CD40 signaling in vascular cells: a key role in atherosclerosis? Atherosclerosis. 1998. 137:suppl. S89–S95.
crossref
52. Xu Q. Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol. 2002. 22(10):1547–1559.
crossref
53. Haskard DO, Boyle JJ, Mason JC. The role of complement in atherosclerosis. Curr Opin Lipidol. 2008. 19(5):478–482.
crossref
TOOLS
Similar articles