Abstract
The purpose of present study was to evaluate the polymerization shrinkage stress and amount of linear shrinkage of composites and compomers for posterior restoration.
For this purpose, linear polymerization shrinkage and polymerization stress were measured.
For linear polymerization shrinklage and polymerization stress measurement, custom made Linometer (R&B, Daejon, Korea) and Stress measuring machine was used (R&B, Daejon, Korea). Compositers and compomers were evaluated; Dyract AP (Dentsply Detrey, Gumbh. German) Z100 (3M Dental Products, St. Paul, USA) Surefil (Dentsply Caulk, Milford, USA) Pyramid(Bisco, Schaumburg, USA) Synergy Compact (Coltene, Altstatten, Switzerland), Heliomolar (Vivadent/Ivoclar, Liechtenstein), and Compoglass (Vivadent Ivoclar/Liechtenstein) were used. 15 measurements were made for each material. Linear polymerization shrinkage or polymerization stress for each material was compared with one way ANOVA with Tukey at 95% levels of confidence.
For linear shrinkage; Heliomolar, Surefil<Synergy Compact, Z100<Dyract AP<Pyramid, Compoglass F (p<0.05)
For Shrinkage stress; Heliomolar<Z100, Pyramid<Synergy Compact, Compoglass F<Dyract AP<Heliomolar HB, Surefil (p<0.05)
Figures and Tables
References
1. Bausch JR, de Lange K, Davidson CR, Peters A, De Gee AJ. Clinical significance of polymerization shrinkage of composite resins. J Prosthet Dent. 1982. 48:59–67.
2. Eick JD, Welch FH. Polymerization shrinkage of posterior composite resins and its possible influence on postoperative sensitivity. Quintessence Int. 1986. 17:103–111.
3. Kemp-Scholte CM, Davidson CL. Marginal sealing of curing contraction gaps in class V composite resin restorations. J Dent Res. 1988. 67:841–845.
4. Roberts JC, Powers JM, Craig RG. Fracture toughness of composite and unfilled restorative resins. J Dent Res. 1977. 56:748.
5. Feilzer AJ, De Gee AJ, Davidson CL. Setting stress in composite resin in relation to configuration of the restoration. J Dent Res. 1987. 66:1636–1639.
6. Feilzer AJ, De Gee AJ, Davidson CL. Increased wall-to-wall curing contraction in thin bonded resin layers. J Dent Res. 1989. 68:48–50.
7. Hansen EK. Effect of cavity depth and application technique on marginal adaptation of resins in dentin cavities. J Dent Res. 1986. 65:1319–1321.
8. Krejci I, Sperr D, Lutz F. A three sited light curing technique for conventional Class II composite restorations. Quintessence Int. 1987. 18:125–131.
9. Lutz F, Krejci I, Barbakow F. The importance of proximal curing in posterior composite resin restorations. Quintessence Int. 1992. 23:605–609.
10. Park SH, Krejci I, Lutz F. A comparison of microhardness of resin composites polymerized by plasma arc or conventional visible light curing. Oper Dent. 2002. 27:30–37.
11. Park SH, Krejci I, Lutz F. Consistency in the amount of linear polymerization shrinkage in syringa type composite. Dent Mater. 1999. 442–446.
12. Lim BS, Ferracane JL, Sakaguchi RL, Condon JR. Reduction of polymerization contraction stress for dental composites by two-step light activation. Dent Mater. 2002. 18:436–444.
13. Christensen GJ. Tooth colored Posterior restoration. Oper Dent. 1997. 22:146–148.
14. Mazer RB, Leinfelder KF. Evaluating a microfill posterior composite resin: a five-year study. J Am Dent Assoc. 1992. 123:32–38.