Journal List > J Korean Diabetes > v.18(4) > 1055071

Kee and Han: Recent Updates on Diabetic Nephropathy

Abstract

Diabetic nephropathy is a common complication of diabetes mellitus and is the leading cause of chronic kidney disease. Glycemic and blood pressure control constitute the main strategies of diabetic nephropathy prevention and treatment. However, despite current therapies, nephropathy progresses to renal failure and end-stage renal disease in many patients. Therefore, new therapeutic strategies targeting different pathophysiological mechanisms are needed. This review article briefly summarizes the standard therapy for diabetic nephropathy and also describes recent advances in potential renoprotective agents that could be used to prevent the development or progression of diabetic nephropathy.

References

1. Nathan DM. DCCT/EDIC Research Group. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care. 2014; 37:9–16.
crossref
2. DCCT/EDIC Research Group. de Boer IH, Sun W, Cleary PA, Lachin JM, Molitch ME, Steffes MW, Zinman B. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011; 365:2366–76.
3. Bilous R. Microvascular disease: what does the UKPDS tell us about diabetic nephropathy? Diabet Med. 2008; 25(Suppl 2):25–9.
crossref
4. Action to Control Cardiovascular Risk in Diabetes Study Group. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, IsmailBeigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008; 358:2545–59.
5. ADVANCE Collaborative Group. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008; 358:2560–72.
6. Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le Marchand-Brustel Y, Auberger P, Tanti JF, Giorgetti-Peraldi S, Bost F. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 2011; 71:4366–72.
crossref
7. Jin HM, Pan Y. Renoprotection provided by losartan in combination with pioglitazone is superior to renoprotection provided by losartan alone in patients with type 2 diabetic nephropathy. Kidney Blood Press Res. 2007; 30:203–11.
crossref
8. Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, Seino Y, Yamada Y. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int. 2014; 85:579–89.
crossref
9. Mann JFE, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, Tornøe K, Zinman B, Buse JB. LEADER Steering Committee and Investigators. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017; 377:839–48.
crossref
10. Hattori S. Sitagliptin reduces albuminuria in patients with type 2 diabetes. Endocr J. 2011; 58:69–73.
11. Fujita H, Taniai H, Murayama H, Ohshiro H, Hayashi H, Sato S, Kikuchi N, Komatsu T, Komatsu K, Komatsu K, Narita T, Yamada Y. DPP-4 inhibition with alogliptin on top of angiotensin II type 1 receptor blockade ameliorates albuminuria via upregulation of SDF-1α in type 2 diabetic patients with incipient nephropathy. Enocr J. 2014; 61:159–66.
12. Mori H, Okada Y, Arao T, Tanaka Y. Sitagliptin improves albuminuria in patients with type 2 diabetes mellitus. J Diabetes Investig. 2014; 5:313–9.
crossref
13. Groop PH, Cooper ME, Perkovic V, Emser A, Woerle HJ, von Eynatten M. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013; 36:3460–8.
crossref
14. van Bommel EJ, Muskiet MH, Tonneijck L, Kramer MH, Nieuwdorp M, van Raalte DH. SGLT2 inhibition in the diabetic kidney-from mechanisms to clinical outcome. Clin J Am Soc Nephrol. 2017; 12:700–710.
crossref
15. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B. EMPA-REG OUTCOME Investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016; 375:323–34.
crossref
16. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377:644–57.
crossref
17. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000; 355:253–9.
18. Barnett AH, Bain SC, Bouter P, Karlberg B, Madsbad S, Jervell J, Mustonen J. Diabetics Exposed to Telmisartan and Enalapril Study Group. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med. 2004; 351:1952–61.
crossref
19. Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, Drummond K, Donnelly S, Goodyer P, Gubler MC, Klein R. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009; 361:40–51.
crossref
20. Parving HH, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P. Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001; 345:870–8.
crossref
21. Bangalore S, Fakheri R, Toklu B, Messerli FH. Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and metaanalysis of randomized trials. BMJ. 2016; 352:i438.
crossref
22. Onuigbo MA. The STOP-ACEi Trial-Apt timing for this long awaited randomised controlled trial-validation of the syndrome of late-onset renal failure from angiotensin blockade (LORFFAB)? Int J Clin Pract. 2017; 71:doi: 10.1111/ijcp.12916. [Epub ahead of print].
23. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, Snapinn S, Cooper ME, Mitch WE, Brenner BM. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL Kidney Int. 2004; 65:2309–20.
24. Hunsicker LG, Atkins RC, Lewis JB, Braden G, de Crespigny PJ, DeFerrari G, Drury P, Locatelli F, Wiegmann TB, Lewis EJ. Collaborative Study Group. Impact of irbesartan, blood pressure control, and proteinuria on renal outcomes in the Irbesartan Diabetic Nephropathy Trial. Kidney Int Suppl. 2004; 92:S99–101.
crossref
25. Haller H, Ito S, Izzo JL Jr, Januszewicz A, Katayama S, Menne J, Mimran A, Rabelink TJ, Ritz E, Ruilope LM, Rump LC, Viberti G. ROADMAP Trial Investigators. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med. 2011; 364:907–17.
crossref
26. Bilous R, Chaturvedi N, Sjølie AK, Fuller J, Klein R, Orchard T, Porta M, Parving HH. Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann Intern Med. 2009; 151:11–20. W3–4.
27. ONTARGET Investigators, Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P, Anderson C. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008; 358:1547–59.
crossref
28. Bomback AS, Kshirsagar AV, Amamoo MA, Klemmer PJ. Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review. Am J Kidney Dis. 2008; 51:199–211.
crossref
29. Pichler RH, de Boer IH. Dual renin-angiotensin-aldosterone system blockade for diabetic kidney disease. Curr Diab Rep. 2010; 10:297–305.
crossref
30. Esteras R, Perez-Gomez MV, Rodriguez-Osorio L, Ortiz A, Fernandez-Fernandez B. Combination use of medicines from two classes of renin-angiotensin system blocking agents: risk of hyperkalemia, hypotension, and impaired renal function. Ther Adv Drug Saf. 2015; 6:166–76.
crossref
31. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, Remuzzi G, Rossing P, Schmieder RE, Nowack C, Kolkhof P, Joseph A, Pieper A, Kimmeskamp-Kirschbaum N, Ruilope LM. Mineralocorticoid Receptor Antagonist Tolerability Study–Diabetic Nephropathy (ARTS-DN) study Group. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized Clinical Trial JAMA. 2015; 314:884–94.
32. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, Ford I, Cruickshank JK, Caulfield MJ, Salsbury J, Mackenzie I, Padmanabhan S, Brown MJ. British Hypertension Society's PATHWAY Studies Group. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015; 386:2059–68.
crossref
33. Parving HH, Persson F, Lewis JB, Lewis EJ, Hollenberg NK. AVOID Study Investigators. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med. 2008; 358:2433–46.
crossref
34. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, Chaturvedi N, Persson F, Desai AS, Nicolaides M, Richard A, Xiang Z, Brunel P, Pfeffer MA. ALTITUDE Investigators. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012; 367:2204–13.
crossref
35. Haynes R, Lewis D, Emberson J, Reith C, Agodoa L, Cass A, Craig JC, de Zeeuw D, Feldt-Rasmussen B, Fellström B, Levin A, Wheeler DC, Walker R, Herrington WG, Baigent C, Landray MJ. SHARP Collaborative Group; SHARP Collaborative Group. Effects of lowering LDL cholesterol on progression of kidney disease. J Am Soc Nephrol. 2014; 25:1825–33.
crossref
36. Shen X, Zhang Z, Zhang X, Zhao J, Zhou X, Xu Q, Shang H, Dong J, Liao L. Efficacy of statins in patients with diabetic nephropathy: a metaanalysis of randomized controlled trials. Lipids Health Dis. 2016; 15:179.
crossref
37. Sharaf El Din UA, Salem MM, Abdulazim DO. Stop chronic kidney disease progression: Time is approaching. World J Nephrol. 2016; 5:258–73.
38. Korean Diabetes Association. Medical treatment manual for diabetes-practice of dietetic therapy doctor need to know. Seoul: Korean Diabetes Association;2011. p. 27–31.
39. National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012; 60:850–86.
40. Gambaro G, Bax G, Fusaro M, Normanno M, Manani SM, Zanella M, Dangelo A, Fedele D, Favaro S. Cigarette smoking is a risk factor for nephropathy and its progression in type 2 diabetes mellitus. Diabetes Nutr Metab. 2001; 14:337–42.
41. Kang DH, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M, Truong L, Harris R, Johnson RJ. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002; 13:2888–97.
42. Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006; 47:51–9.
crossref
43. Liu P, Chen Y, Wang B, Zhang F, Wang D, Wang Y. Allopurinol treatment improves renal function in patients with type 2 diabetes and asymptomatic hyperuricemia: 3-year randomized parallel-controlled study. Clin Endocrinol (Oxf). 2015; 83:475–82.
crossref
44. Sircar D, Chatterjee S, Waikhom R, Golay V, Raychaudhury A, Chatterjee S, Pandey R. Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis. 2015; 66:945–50.
crossref
45. Jeong J, Kwon SK, Kim HY. Effect of bicarbonate supplementation on renal function and nutritional indices in predialysis advanced chronic kidney disease. Electrolyte Blood Press. 2014; 12:80–7.
crossref
46. de Zeeuw D, Agarwal R, Amdahl M, Audhya P, Coyne D, Garimella T, Parving HH, Pritchett Y, Remuzzi G, Ritz E, Andress D. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet. 2010; 376:1543–51.
crossref
47. Kim MJ, Frankel AH, Donaldson M, Darch SJ, Pusey CD, Hill PD, Mayr M, Tam FW. Oral cholecalciferol decreases albuminuria and urinary TGF-β1 in patients with type 2 diabetic nephropathy on established renin-angiotensin-aldosterone system inhibition. Kidney Int. 2011; 80:851–60.
crossref
48. Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, Chahin J, Méndez ML, Gallego E, Macía M, del Castillo N, Rivero A, Getino MA, García P, Jarque A, García J. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial. J Am Soc Nephrol. 2015; 26:220–9.
crossref
49. Sharma K, Ix JH, Mathew AV, Cho M, Pflueger A, Dunn SR, Francos B, Sharma S, Falkner B, McGowan TA, Donohue M, Ramachandrarao S, Xu R, Fervenza FC, Kopp JB. Pirfenidone for diabetic nephropathy. J Am Soc Nephrol. 2011; 22:1144–51.
crossref
50. Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, Krauth M, Ruiz S, Audhya P, Christ-Schmidt H, Wittes J, Warnock DG. BEAM Study Investigators. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011; 365:327–36.
crossref
51. de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, Goldsberry A, Houser M, Krauth M, Lambers Heerspink HJ, McMurray JJ, Meyer CJ, Parving HH, Remuzzi G, Toto RD, Vaziri ND, Wanner C, Wittes J, Wrolstad D, Chertow GM. BEACON Trial Investigators. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013; 369:2492–503.
crossref
52. Tesch GH, Ma FY, Han Y, Liles JT, Breckenridge DG. Nikolic-Paterson D2. ASK1 inhibitor halts progression of diabetic nephropathy in Nos3-deficient mice. Diabetes. 2015; 64:3903–13.
crossref
53. de Zeeuw D, Bekker P, Henkel E, Hasslacher C, Gouni-Berthold I, Mehling H, Potarca A, Tesar V, Heerspink HJ, Schall TJ. CCX140-B Diabetic Nephropathy Study Group. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol. 2015; 3:687–96.
crossref
54. Li JJ, Lee SH, Kim DK, Jin R, Jung DS, Kwak SJ, Kim SH, Han SH, Lee JE, Moon SJ, Ryu DR, Yoo TH, Han DS, Kang SW. Colchicine attenuates inflammatory cell infiltration and extracellular matrix accumulation in diabetic nephropathy. Am J Physiol Renal Physiol. 2009; 297:F200–9.
crossref
55. Brosius FC, Tuttle KR, Kretzler M. JAK inhibition in the treatment of diabetic kidney disease. Diabetologia. 2016; 59:1624–7.
crossref
56. Tuttle KR, McGill JB, Haney DJ, Lin TE, Anderson PW. PKC-DRS, PKC-DMES, and PKC-DRS 2 Study Groups. Kidney outcomes in longterm studies of ruboxistaurin for diabetic eye disease. Clin J Am Soc Nephrol. 2007; 2:631–6.
crossref
57. Al-Onazi AS, Al-Rasheed NM, Attia HA, Al-Rasheed NM, Ahmed RM, Al-Amin MA, Poizat C. Ruboxistaurin attenuates diabetic nephropathy via modulation of TGF-β1/Smad and GRAP pathways. J Pharm Pharmacol. 2016; 68:219–32.
crossref
58. Kennedy L, Solano MP, Meneghini L, Lo M, Cohen MP. Anti-glycation and anti-albuminuric effects of GLY-230 in human diabetes. Am J Nephrol. 2010; 31:110–6.
crossref
59. Kohan DE, Lambers Heerspink HJ, Coll B, Andress D, Brennan JJ, Kitzman DW, Correa-Rotter R, Makino H, Perkovic V, Hou FF, Remuzzi G, Tobe SW, Toto R, Parving HH, de Zeeuw D. Predictors of atrasentan-associated fluid retention and change in albuminuria in patients with diabetic nephropathy. Clin J Am Soc Nephrol. 2015; 10:1568–74.
crossref
60. Fang Y, Tian X, Bai S, Fan J, Hou W, Tong H, Li D. Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, proinflammatory cytokines and the p38 MAPK signaling pathway. Int J Mol Med. 2012; 30:85–92.
crossref

Table 1.
Conventional treatment of diabetic nephropathy
Treatments Goals
Blood glucose control •HbA1c < 7.0% (ADA), HbA1c < 6.5% (KDIGO)
Blood pressure control •< 140/90 mmHg with albuminuria (≤ 30 mg/g Cr)
•< 130/80 mmHg with albuminuria (> 30 mg/g Cr) with increased risk of CVD and CKD progression
Use of RAAS blockers •Not recommended for patients without albuminuria (< 30 mg/g Cr) and those with normal eGFR (≥ 60 mL/min/1.73 m2) and normal blood pressure
•Recommended for patients with hypertension and albuminuria (30∼299 mg/g Cr) and strongly recommended for those with severe albuminuria (≥ 300 mg/g Cr) and/or decreased eGFR (< 60 mL/min/1.73 m2)
Treatment of dyslipidemia •Treatment with statins is recommended for all DN patients
Smoking cessation •Recommended for all DN patients
Diet control •Diet salt restriction to less than 5∼6 g/d
•Diet protein restriction to 0.6∼0.8 g/kg/d in CKD 3 and 4
Treatment of metabolic acidosis •Administer sodium bicarbonate (maintaining serum tCO2 at 22∼24 mEq/L)
Others •Treatment of hyperuricemia
•Management of hyperphosphatemia
•Pentoxifylline
•Vitam in D receptor agonists

ADA, American Diabetes Association; KDIGO, Kidney Disease Improving Global Outcomes guideline; Cr, creatinine; CVD, cardiovascular disease; CKD, chronic kidney disease; RAAS, renin-angiotensin-aldosterone system; eGFR, estimated glomerular filtration rate; DN, diabetic nephropathy.

Table 2.
Potential drugs for diabetic nephropathy under clinical trials
Drug Target actions Study type and status Populatio (n) on Duration Results
Pirfenidone Anti-fibrotic and antiinflammatory action Randomized controlled phase-II study, completed 77 6 months Improved eGFR
Pyridoxine Inhibition of the formation of AGEs Randomized controlled phase-III study, terminated Terminated due to funding constraint No results available
Bardoxolone Inhibition of the proinflammatory factor, NF-κB Randomized controlled phase-III study, terminated Terminated due to increased risk of cardiovascular deaths and event Improved eGFR and BP Reduction of albuminuria
GS-4997 Inhibition of the apoptosis signal-regulating kinase 1 Randomized controlled phase-II study, completed 334 48 weeks No results available
CCX 140-B Selective inhibition of the chemokine receptor 2 Randomized controlled phase-II study, completed 332 52 weeks Reduction of albuminuria Decelerated eGFR decline
Bindarit Inhibition of the activation of NF-κB Randomized controlled phase-II study, completed 100 12 weeks No results available
Colchicine Anti-fibrotic and anti-inflammatory action Randomized controlled phase-II study, ongoing  
Baricitinib Inhibition of JAK pathway Randomized controlled phase-II study, completed 129 6 months Reduction of albuminuria and inflammation markers without affecting renal function
Ruboxistaurin Protein kinase C inhibitor Randomized controlled phase-II study, completed 123 12 months Reduction of albuminuria without affecting renal function
GLY-230 Inhibition of the glycosylation of plasmatic albumin Randomized controlled phase-II study, completed 21 14 days Reduction of albuminuria
Atrasentan Inhibition of endothelin A receptor Randomized controlled phase-II study, completed 211 12 weeks Reduction of albuminuria without affecting renal function Fluid retention (weight gain and reduction in hemoglobin)

eGFR, estimated glomerular filtration rate; AGEs, advanced glycation end products; NF-κB, nuclear factor kappa B; BP, blood pressure.

TOOLS
Similar articles