Journal List > J Korean Diabetes > v.14(3) > 1054871

Kim and Kim: Comparison of DPP-4 Inhibitors

Abstract

During past several years, a novel class of antihyperglycemic agents, dipeptidyl peptidase-4 (DPP-4) inhibitors, has become one of the most important options in the management of type 2 diabetes. These agents have unique insulinotropic actions as well as other advantages such as lower hypoglycemia and a weight-neutral effect compared to traditional insulin secretagogues. To date, 6 different DPP-4 inhibitors have been introduced: sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin and gemiglitin. This review provides a summary of the clinical data for each DPP-4 inhibitor, and discusses the similarities and differences between them.

References

1. Elrick H, Stimmler L, Hlad CJ Jr, Arai Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964; 24:1076–82.
2. Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, Creutzfeldt W. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986; 63:492–8.
crossref
3. Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulindependent) diabetes. Diabetologia. 1986; 29:46–52.
crossref
4. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. American Diabetes Association (ADA); European Association for the Study of Diabetes (EASD). Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012; 35:1364–79.
crossref
5. Rodbard HW, Jellinger PS, Davidson JA, Einhorn D, Garber AJ, Grunberger G, Handelsman Y, Horton ES, Lebovitz H, Levy P, Moghissi ES, Schwartz SS. Statement by an American Association of Clinical Endocrinologists/American College of Endocrinology consensus panel on type 2 diabetes mellitus: an algorithm for glycemic control. Endocr Pract. 2009; 15:540–59.
6. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007; 87:1409–39.
crossref
7. Yazbeck R, Howarth GS, Abbott CA. Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory.
8. Herman GA, Stein PP, Thornberry NA, Wagner JA. Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes: focus on sitagliptin. Clin Pharmacol Ther. 2007; 81:761–7.
crossref
9. He H, Tran P, Yin H, Smith H, Batard Y, Wang L, Einolf H, Gu H, Mangold JB, Fischer V, Howard D. Absorption, metabolism, and excretion of [14C]vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in humans. Drug Metab Dispos. 2009; 37:536–44.
crossref
10. Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, Mangold BL, Russell ME, Hughes TE. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem. 2003; 46:2774–89.
crossref
11. Augeri DJ, Robl JA, Betebenner DA, Magnin DR, Khanna A, Robertson JG, Wang A, Simpkins LM, Taunk P, Huang Q, Han SP, Abboa-Offei B, Cap M, Xin L, Tao L, Tozzo E, Welzel GE, Egan DM, Marcinkeviciene J, Chang SY, Biller SA, Kirby MS, Parker RA, Hamann LG. Discovery and preclinical profile of Saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem. 2005; 48:5025–37.
crossref
12. Eckhardt M, Langkopf E, Mark M, Tadayyon M, Thomas L, Nar H, Pfrengle W, Guth B, Lotz R, Sieger P, Fuchs H, Himmelsbach F. 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J Med Chem. 2007; 50:6450–3.
crossref
13. Thomas L, Eckhardt M, Langkopf E, Tadayyon M, Himmelsbach F, Mark M. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J Pharmacol Exp Ther. 2008; 325:175–82.
crossref
14. SFeng J, Zhang Z, Wallace MB, Stafford JA, Kaldor SW, Kassel DB, Navre M, Shi L, Skene RJ, Asakawa T, Takeuchi K, Xu R, Webb DR, Gwaltney SL 2nd. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem. 2007; 50:2297–300.
15. SCovington P, Christopher R, Davenport M, Fleck P, Mekki QA, Wann ER, Karim A. Pharmacokinetic, pharmacodynamic, and tolerability profiles of the dipeptidyl peptidase-4 inhibitor alogliptin: a randomized, double-blind, placebo-controlled, multiple-dose study in adult patients with type 2 diabetes. Clin Ther. 2008; 30:499–512.
16. Lim KS, Kim JR, Choi YJ, Shin KH, Kim KP, Hong JH, Cho JY, Shin HS, Yu KS, Shin SG, Kwon OH, Hwang DM, Kim JA, Jang IJ. Pharmacokinetics, pharmacodynamics, and tolerability of the dipeptidyl peptidase IV inhibitor LC15–0444 in healthy Korean men: a dose-block-randomized, double-blind, placebo-controlled, ascending single-dose, Phase I study. Clin Ther. 2008; 30:1817–30.
crossref
17. SBaetta R, Corsini A. Pharmacology of dipeptidyl peptidase-4 inhibitors: similarities and differences. Drugs. 2011; 71:1441–67.
18. SBlech S, Ludwig-Schwellinger E, Gräfe-Mody EU, Withopf B, Wagner K. The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans. Drug Metab Dispos. 2010; 38:667–78.
crossref
19. He YL, Sabo R, Campestrini J, Wang Y, Ligueros-Saylan M, Lasseter KC, Dilzer SC, Howard D, Dole WP. The influence of hepatic impairment on the pharmacokinetics of the dipeptidyl peptidase IV (DPP-4) inhibitor vildagliptin. Eur J Clin Pharmacol. 2007; 63:677–86.
crossref
20. SAschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C, Williams-Herman DE. Sitagliptin Study 021 Group. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 2006; 29:2632–7.
21. Goldstein BJ, Feinglos MN, Lunceford JK, Johnson J, Williams-Herman DE. Sitagliptin 036 Study Group. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care. 2007; 30:1979–87.
crossref
22. Pi-Sunyer FX, Schweizer A, Mills D, Dejager S. Efficacy and tolerability of vildagliptin monotherapy in drug-naïve patients with type 2 diabetes. Diabetes Res Clin Pract. 2007; 76:132–8.
crossref
23. Dejager S, Razac S, Foley JE, Schweizer A. Vildagliptin in drug-naïve patients with type 2 diabetes: a 24-week, double-blind, randomized, placebo-controlled, multiple-dose study. Horm Metab Res. 2007; 39:218–23.
crossref
24. Rosenstock J, Aguilar-Salinas C, Klein E, Nepal S, List J, Chen R. CV181–011 Study Investigators. Effect of saxagliptin monotherapy in treatment-naïve patients with type 2 diabetes. Curr Med Res Opin. 2009; 25:2401–11.
crossref
25. Del Prato S, Barnett AH, Huisman H, Neubacher D, Woerle HJ, Dugi KA. Effect of linagliptin monotherapy on glycaemic control and markers of β-cell function in patients with inadequately controlled type 2 diabetes: a randomized controlled trial. Diabetes Obes Metab. 2011; 13:258–67.
crossref
26. DeFronzo RA, Fleck PR, Wilson CA, Mekki Q. Alogliptin Study 010 Group. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes and inadequate glycemic control: a randomized, double-blind, placebo-controlled study. Diabetes Care. 2008; 31:2315–7.
27. Yang SJ, Min KW, Gupta SK, Park JY, Shivane VK, Pitale SU, Agarwal PK, Sosale A, Gandhi P, Dharmalingam M, Mohan V, Mahesh U, Kim DM, Kim YS, Kim JA, Kim PK, Baik SH. A multicentre, multinational, randomized, placebo-controlled, double-blind, phase 3 trial to evaluate the efficacy and safety of gemigliptin (LC15–0444) in patients with type 2 diabetes. Diabetes Obes Metab. 2013; 15:410–6.
28. Charbonnel B, Karasik A, Liu J, Wu M, Meininger G. Sitagliptin Study 020 Group. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care. 2006; 29:2638–43.
crossref
29. Scott R, Loeys T, Davies MJ, Engel SS. Sitagliptin Study 801 Group. Efficacy and safety of sitagliptin when added to ongoing metformin therapy in patients with type 2 diabetes. Diabetes Obes Metab. 2008; 10:959–69.
crossref
30. Bosi E, Camisasca RP, Collober C, Rochotte E, Garber AJ. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care. 2007; 30:890–5.
crossref
31. Goodman M, Thurston H, Penman J. Efficacy and tolerability of vildagliptin in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Horm Metab Res. 2009; 41:368–73.
crossref
32. DeFronzo RA, Hissa MN, Garber AJ, Luiz Gross J, Yuyan Duan R, Ravichandran S, Chen RS. Saxagliptin 014 Study Group. The efficacy and safety of saxagliptin when added to metformin therapy in patients with inadequately controlled type 2 diabetes with metformin alone. Diabetes Care. 2009; 32:1649–55.
crossref
33. Taskinen MR, Rosenstock J, Tamminen I, Kubiak R, Patel S, Dugi KA, Woerle HJ. Safety and efficacy of linagliptin as add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2011; 13:65–74.
crossref
34. Nauck MA, Ellis GC, Fleck PR, Wilson CA, Mekki Q. Alogliptin Study 008 Group. Efficacy and safety of adding the dipeptidyl peptidase-4 inhibitor alogliptin to metformin therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a multicentre, randomised, double-blind, placebo-controlled study. Int J Clin Pract. 2009; 63:46–55.
crossref
35. Nauck MA, Meininger G, Sheng D, Terranella L, Stein PP. Sitagliptin Study 024 Group. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab. 2007; 9:194–205.
crossref
36. Ferrannini E, Fonseca V, Zinman B, Matthews D, Ahrén B, Byiers S, Shao Q, Dejager S. Fifty-two-week efficacy and safety of vildagliptin vs. glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin monotherapy. Diabetes Obes Metab. 2009; 11:157–66.
crossref
37. Filozof C, Gautier JF. A comparison of efficacy and safety of vildagliptin and gliclazide in combination with metformin in patients with Type 2 diabetes inadequately controlled with metformin alone: a 52-week, randomized study. Diabet Med. 2010; 27:318–26.
38. Göke B, Gallwitz B, Eriksson J, Hellqvist A, Gause-Nilsson I. D1680C00001 Investigators. Saxagliptin is non-inferior to glipizide in patients with type 2 diabetes mellitus inadequately controlled on metformin alone: a 52-week randomised controlled trial. Int J Clin Pract. 2010; 64:1619–31.
crossref
39. Gallwitz B, Rosenstock J, Rauch T, Bhattacharya S, Patel S, von Eynatten M, Dugi KA, Woerle HJ. 2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial. Lancet. 2012; 380:475–83.
crossref
40. Scheen AJ, Charpentier G, Ostgren CJ, Hellqvist A, Gause-Nilsson I. Efficacy and safety of saxagliptin in combination with metformin compared with sitagliptin in combination with metformin in adult patients with type 2 diabetes mellitus. Diabetes Metab Res Rev. 2010; 26:540–9.
crossref
41. Richter B, Bandeira-Echtler E, Bergerhoff K, Lerch CL. Dipeptidyl peptidase-4 (DPP-4) inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008; 2:CD006739.
crossref
42. Rhee EJ, Lee WY, Min KW, Shivane VK, Sosale AR, Jang HC, Chung CH, Nam-Goong IS, Kim JA, Kim SW. Gemigliptin Study 006 Group. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor gemigliptin compared with sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Obes Metab. 2013; 15:523–30.
crossref
43. Rizzo MR, Barbieri M, Marfella R, Paolisso G. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition. Diabetes Care. 2012; 35:2076–82.
44. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and metaanalysis. JAMA. 2007; 298:194–206.
45. Williams-Herman D, Engel SS, Round E, Johnson J, Golm GT, Guo H, Musser BJ, Davies MJ, Kaufman KD, Goldstein BJ. Safety and tolerability of sitagliptin in clinical studies: a pooled analysis of data from 10,246 patients with type 2 diabetes. BMC Endocr Disord. 2010; 10:7.
crossref
46. Pospisilik JA, Martin J, Doty T, Ehses JA, Pamir N, Lynn FC, Piteau S, Demuth HU, McIntosh CH, Pederson RA. Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes. 2003; 52:741–50.
47. Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology. 2000; 141:4600–5.
crossref
48. Dore DD, Seeger JD, Arnold Chan K. Use of a claims-based active drug safety surveillance system to assess the risk of acute pancreatitis with exenatide or sitagliptin compared to metformin or glyburide. Curr Med Res Opin. 2009; 25:1019–27.
crossref
49. Engel SS, Williams-Herman DE, Golm GT, Clay RJ, Machotka SV, Kaufman KD, Goldstein BJ. Sitagliptin: review of preclinical and clinical data regarding incidence of pancreatitis. Int J Clin Pract. 2010; 64:984–90.
crossref
50. Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes. 2013; 62:2595–604.
crossref
51. Butler PC, Elashoff M, Elashoff R, Gale EA. A Critical Analysis of the Clinical Use of Incretin-Based Therapies: Are the GLP-1 therapies safe? Diabetes Care. 2013; 36:2118–25.
52. Ban K, Hui S, Drucker DJ, Husain M. Cardiovascular consequences of drugs used for the treatment of diabetes: potential promise of incretin-based therapies. J Am Soc Hypertens. 2009; 3:245–59.
crossref
53. Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev. 2012; 33:187–215.
crossref
54. Ogawa S, Ishiki M, Nako K, Okamura M, Senda M, Mori T, Ito S. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, decreases systolic blood pressure in Japanese hypertensive patients with type 2 diabetes. Tohoku J Exp Med. 2011; 223:133–5.
crossref
55. Tremblay AJ, Lamarche B, Deacon CF, Weisnagel SJ, Couture P. Effect of sitagliptin therapy on postprandial lipoprotein levels in patients with type 2 diabetes. Diabetes Obes Metab. 2011; 13:366–73.
crossref
56. Matikainen N, Mänttäri S, Schweizer A, Ulvestad A, Mills D, Dunning BE, Foley JE, Taskinen MR. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia. 2006; 49:2049–57.
crossref
57. Eliasson B, Möller-Goede D, Eeg-Olofsson K, Wilson C, Cederholm J, Fleck P, Diamant M, Taskinen MR, Smith U. Lowering of postprandial lipids in individuals with type 2 diabetes treated with alogliptin and/or pioglitazone: a randomized double-blind placebo-controlled study. Diabetologia. 2012; 55:915–25.
58. Monami M, Dicembrini I, Martelli D, Mannucci E. Safety of dipeptidyl peptidase-4 inhibitors: a metaanalysis of randomized clinical trials. Curr Med Res Opin. 2011; 27(Suppl 3):57–64.
crossref

Table 1.
Structure-activtiy relationship and pharmacodynamics of dipeptidyl peptidase (DPP)-4 inhibitors
Drug (ref.) Structure IC50 (nmol/L) DPP-4 selectivitya Inhibition of plasma DPP-4 activity (%) Increase in active GLP-1 levels Half-life (hr)
Sitagliptin [8] Piperazine 18 > 2600 ≥ 80 2-fold 8–14
Vildagliptin [9,10] Cyanopyrrolidine 3.5 100 ≥ 80 3-fold 2–3
Saxagliptin [11] Cyanopyrrolidine 0.5 100 ≥ 70 1.5 to 2-fold 2.5
Linagliptin [12,13] Xanthine-based 1 > 10000 ≥ 70 2 to 3-fold 113–131
Alogliptin [14,15] Pyrimidine 7 > 14000 > 75 2 to 2-fold 12.4–21.4
Gemigliptin [16]b Pyrimidopiperidine 6.3 > 3400 NA 2 to 3-fold 17–21

a vs. DPP-8 or DPP-9.

b also from unpublished data of LG Life Science. GLP-1, glucagon like peptide-1; NA, not available.

Table 2.
Dosage adjustments for kidney disease
Drug Usual dose (daily) Ccr > 50 mL/min Renal impairment Ccr 30–50 mL/min Ccr < 30 mL/min
Sitagliptin 100 mg 100 mg 50 mg 25 mg
Vildagliptin 100 mg 100 mg 50 mg 50 mg
Saxagliptin 5 mg 5 mg 2.5 mg 2.5 mg
Linagliptin 5 mg 5 mg 5 mg 5 mg
Alogliptin 25 mg 25 mg 12.5 mg 6.25 mg
Gemigliptina 50 mg 50 mg 50 mg 50 mg

a KFDA approved based on pharmacokinetic/pharmacodynamic data but not clinical data.

Table 3.
Efficacy of dipeptidyl peptidase (DPP)-4 inhibtors as an initial monotherapy in drug-naïve type 2 diabetic patients
Drug No. of patients Study duration Baseline HbA1c level Study group Control Reduction of HbA1c Reference no.
Sitagliptin 741 24 wk 8.0% Sita 100 mg Placebo –0.79% [20]
        Sita 200 mg   –0.94%  
  1091 24 wk 8.8% Sita 100 mg Placebo –0.83% [21]
Vildagliptin 354 24 wk 8.4% Vilda 50 mg qd Placebo –0.5% [22]
        Vilda 50 mg bid   –0.7%  
        Vilda 100 mg qd   –0.9%  
  632 24 wk 8.4% Vilda 50 mg qd Placebo –0.5% [23]
        Vilda 50 mg bid   –0.5%  
        Vilda 100 mg qd   –0.6%  
Saxagliptin 401 24 wk 7.9% Saxa 2.5 mg Placebo –0.52% [24]
        Saxa 5 mg   –0.55%  
        Saxa 10 mg   –0.63%  
Linagliptin 503 24 wk 8.0% Lina 5 mg Placebo –0.69% [25]a
Alogliptin 329 26 wk 7.9% Alo 12.5 mg Placebo –0.58% [26]
        Alo 25 mg   –0.61%  
Gemigliptin 180 24 wk 8.2% Gemi 50 mg Placebo –0.71% [27]

a Includes patients who were either drug-naïve or had previously received one oral antihyperglycemic drug (with washout).

Table 4.
Efficacy of dipeptidyl peptidase (DPP)-4 inhibtors as add-on therapy to metformin in type 2 diabetic patients
Drug No. of patients Study duration Baseline HbA1c level Study group Control Reduction of HbA1c Reference no.
Sitagliptin 701 24 wk 8.0% MET + Sita 100 mg MET + Placebo –0.65% [28]
  273 18 wk 7.7% MET + Sita 100 mg MET + Placebo –0.51% [29]
Vildagliptin 544 24 wk 8.4% MET + Vilda 50 mg MET + Placebo –0.7% [30]
        MET + Vilda 100 mg   –1.1%  
  370 24 wk 8.5% MET + Vilda 100 mg MET + Placebo –0.83% [31]
Saxagliptin 743 24 wk 8.0% MET + Saxa 2.5 mg MET + Placebo –0.73% [32]
        MET + Saxa 5 mg   –0.83%  
        MET + Saxa 10 mg   –0.72%  
Linagliptin 701 24 wk 8.1% MET + Lina 5 mg MET + Placebo –0.64% [33]
Alogliptin 527 26 wk 7.9% MET + Alo 12.5 mg MET + Placebo –0.5% [34]
        MET + Alo 25 mg   –0.5%  
Table 5.
Comparison of dipeptidyl peptidase (DPP)-4 inhibitors with sulfonylureas in type 2 diabetic patients
Drug No. of patients Study duration Baseline HbA1c level Study group Control Reduction of HbA1c Reference no.
Sitagliptin 1172 52 wk 7.5% Sita 100 mg + MET Glipizide 5 mg + MET –0.67% vs. −0.67% [35]
Vildagliptin 2789 52 wk 7.3% MET + Vilda 100 mg MET + glimepiride (∼6 mg) –0.44% vs. −0.53% [36]
  1007 52 wk 8.5% MET + Vilda 100 mg MET + gliclazide (∼320 mg) –0.81% vs. −0.85% [37]
Saxagliptin 858 52 wk 7.7% MET + Saxa 5 mg MET + glipizide (∼20 mg) –0.74% vs. −0.80% [38]
Linagliptin 1552 96 wk 7.7% MET + Lina 5 mg MET + glimepiride (∼4 mg) –0.16% vs. −0.36% [39]
TOOLS
Similar articles