Journal List > Brain Neurorehabil > v.7(1) > 1054737

Yoon, Kim, and Kim: Prediction of Neurological Recovery in Patients with Hypoxic-ischemic Encephalopathy

Abstract

The incidence of hypoxic-ischemic encephalopathy (HIE) is not well known, however, the common causes of hypoxic-ischemic encephalopathy are sudden cardiac arrest, acute respiratory failure and carbon monoxide poisoning. Due to high metabolic demand, the brain is very susceptible to damage from deprivation of blood supply and oxygen delivery. When patients recover from comatose after HIE, there are various spectrums of neurological outcomes, ranging from vegetative state to good recovery. Various methods including neurologic examination, neurophysiologic and biochemical tools, neuroimaging technique have been proposed for the prognostic evaluation of HIE. This article reviews the pathophysiology of HIE and predictive methods for neurological recovery after HIE.

Figures and Tables

Table 1
Classification of Hypoxic-Ischemic Encephalopathy
bn-7-5-i001

Notes

This work was supported by a faculty research grant of Yonsei University College of Medicine for 2010 (6-2010-0034), Seoul, Republic of Korea.

References

1. Callans DJ. Out-of-hospital cardiac arrest-the solution is shocking. N Engl J Med. 2004; 351:632–634.
2. Brierly JB, Graham DI. Hypoxia and vascular disorders of the central nervous system. In : Adams JH, Corsellis JAN, Duchan LW, editors. Greenfield's Neuropathology. 4th ed. London: Arnold;1984. p. 125–207.
3. Wijdicks EFM, Hijdra A, Young GB, Bassetti CL, Wiebe S. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidencebased review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006; 67:203–210.
4. Hossmann KA. Reperfusion of the brain after global ischemia:hemodynamic disturbances. Shock. 1997; 8(2):95–103.
5. Ames A 3rd, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968; 52(2):437–453.
6. Crumrine RC, LaManna JC. Regional cerebral metabolites, blood flow, plasma volume, and mean transit time in total cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1991; 11(2):272–282.
7. LaManna JC, Crumrine RC, Jackson DL. No correlation between cerebral blood flow and neurologic recovery after reversible total cerebral ischemia in the dog. Exp Neurol. 1988; 101(2):234–247.
8. Ginsberg MD, Myers RE. The topography of impaired-microvascular perfusion in the primate brain following total circulatory arrest. Neurology. 1972; 22(10):998–1011.
9. Cervos-Navarro J, Diemer NH. Selective vulnerability in brain hypoxia. Crit Rev Neurobiol. 1991; 6(3):149–182.
10. Petito CK, Feldmann E, Pulsinelli WA, Plum F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology. 1987; 37(8):1281–1286.
11. Kawai K, Nitecka L, Ruetzler CA, Nagashima G, Joó F, Mies G, Nowak TS Jr, Saito N, Lohr JM, Klatzo I. Global cerebral ischemia associated with cardiac arrest in the rat: I. Dynamics of early neuronal changes. J Cereb Blood Flow Metab. 1992; 12(2):238–249.
12. Plum F, Posner JB, Hain RF. Delayed neurological deterioration after anoxia. Arch Intern Med. 1962; 110:18–25.
13. Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982; 11(5):491–498.
14. Busl KM, Greer DM. Hypoxic-ischemic brain injury: Pathophysiology, neuropathology and mechanism. Neurorehabilitation. 2010; 26:5–13.
15. Greer DM. Mechanisms of injury in hypoxic-ischemic encephalopathy: implications to therapy. Semin Neurol. 2006; 26(4):373–379.
16. Prockop LD, Chichkova RI. Carbon monoxide intoxication:an updated review. J Neurol Sci. 2007; 262(1-2):122–130.
17. Zandbergen EG, de Haan RJ, Stoutenbeek CP, Koelman JH, Hijdra A. Systemic review of early prediction of poor outcome in anoxic-ischemic coma. Lancet. 1998; 352:1808–1812.
18. Jørgensen EO, Holm S. Prediction of neurological outcome after cardiopulmonary resuscitation. Resuscitation. 1999; 41:145–152.
19. Edgren E, Hedstrand U, Keisey S, Sutton-Tyrrell K, Safar P. BRCT I STUDY Group. Assessment of neurological prognosis in comatose survivors of cardiac arrest. Lancet. 1994; 343:1055–1059.
20. Berek K, Lechleitner P, Luef G, Felber S, Saltuari L, Schinnerl A, Traweger C, Dienstl F, Aichner F. Early determination of neurological outcome after prehospital cardiopulmonary resuscitation. Stroke. 1995; 26(4):543–549.
21. Zandbergen EG, Hijdra A, Koelman JH, Hart AA, Vos PE, Verbeek MM, de Haan RJ. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology. 2006; 66(1):62–68.
22. Wijdicks EF, Parisi JE, Sharbrough FW. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol. 1994; 35:239–243.
23. Mullie A, Verstringe P, Buylaert W, Houbrechts H, Michem N, Delooz H, Verbruggen H, Van den Broeck L, Corne L, Lauwaert D. Cerebral Resuscitation Study Group of the Belgian Society for Intensive Care. Predictive value of Glasgow coma score for awakening after out-of-hospital cardiac arrest. Lancet. 1988; 1:137–140.
24. Young GB. Neurologic prognisis after cardiac arrest. N Engl J Med. 2009; 361:506–511.
25. Young GB, Doig G, Ragazzoni A. Anoxic-ischemic encephalopathy: clinical and electrophysiological associations with outcome. Neurocrit Care. 2005; 2:159–164.
26. Gendo A, Kramer L, Häfner M, Funk GC, Zauner C, Sterz F, Holzer M, Bauer E, Madl C. Time-dependency of sensory evoked potentials in comatose cardiac arrest survivors. Intensive Care Med. 2001; 27(8):1305–1311.
27. Zingler VC, Krumm B, Bertsch T, Fassbender K, Pohlmann-Eden B. Early prediction of neurological outcome after cardiopulmonary resuscitation: a multimodal approach combining neurochemical and electrophysiological investigations may provide higher prognostic certainty in patients after cardiac arrest. Eur Neurol. 2003; 49:79–84.
28. Roest A, van Bets B, Jorens PG, Baar I, Weyler J, Mercelis R. The prognostic value of the EEG in postanoxic coma. Neurocrit Care. 2009; 10(3):318–325.
29. Bouwes A, Binnekade JM, Kuiper MA, Bosch FH, Zandstra DF, Toornvliet AC, Biemond HS, Kors BM, Koelman JH, Verbeek MM, Weinstein HC, Hijdra A, Horn J. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol. 2012; 71(2):206–212.
30. Torbey MT, Selim M, Knorr J, Bigelow C, Recht L. Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest. Stroke. 2000; 31:2163–2167.
31. Torbey MT, Geocadin R, Bhardwaj A. Brain arrest neurological outcome scale (BrANOS): predicting mortality and severe disability following cardiac arrest. Resuscitation. 2004; 63:55–63.
32. Els T, Kassubek J, Kubalek R, Klisch J. Diffusion-weighted MRI during early global cerebral hypoxia: a predictor for poor clinical outcome? Acta Neurol Scand. 2004; 110:361–367.
33. Wijman CA, Mlynash M, Caufield AF, et al. Prognostic value of brain diffusion-weighted imaging after cardiac arrest. Ann Neurol. 2009; 65:394–402.
34. Mlynash M, Campbell DM, Leproust EM, Fischbein NJ, Bammer R, Eyngorn I, Hsia AW, Moseley M, Wijman CA. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest. Stroke. 2010; 41(8):1665–1672.
35. White ML, Zhang Y, Helvey JT, Omojola MF. Anatomical patterns and correlated MRI findings of non-perinatal hypoxic-ischaemic encephalopathy. Br J Radiol. 2013; 86(1021):20120464.
36. Di H, Boly M, Weng X, Ledoux D, Laureys S. Neuroimaging activation studies in the vegetative state: predictors of recovery? Clin Med. 2008; 8(5):502–507.
37. Kim YW, Kim HS, An YS. Brain metabolism in patients with vegetative state after post-resuscitated hypoxic-ischemic brain injury: statistical parametric mapping analysis of F-18 fluorodeoxyglucose positron emission tomography. Chin Med J. 2013; 126(5):888–894.
TOOLS
Similar articles