Journal List > Lab Anim Res > v.26(2) > 1053605

Choi, Kim, and Kim: Aspectual Comparison of the Skin Changes in Hairless Mice According to the Aging Type

Abstract

The purpose of this study was to compare the skin changes in female SKH-1 hairless mice between UVB irradiated photoaged group and endogenous aged group. The UVB irradiation and endogenous aged groups showed poor skin conditions when compared with normal (N) group in terms of the skin erythema, water content and TEWL (transepidermal water loss). For the changes in gross observation and replica image analysis on wrinkle of the skin tissue, UVB irradiation group showed thicker, wider and deeper wrinkles than the changes seen in N group, whereas endogenous aged group showed thinner, narrower and shallower wrinkles than that of UVB irradiation group. In histopathological findings, UVB irradiation group and endogenous aged group showed thickened epidermis, increased dermal inflammatory cells, decreased collagen and elastic fiber content, increased number of degranulated dermal/subcutaneous mast cells, and lower expression quantity of TGF-β in dermal layer when compared with N group, but to a lesser extent in aged group than the changes in UVB irradiation group. UVB irradiation group and endogenous aged group showed significantly higher xanthine oxidase activity, lower superoxide dismutase and catalase activities, and higher expression of MMP-3 mRNA in skin than N group. Therefore, aspectual comparison of the skin change in hairless mice between photoaged and endogenous aged groups showed different each other, and these results will be useful for skin aging research.

REFERENCES

Aebi H.1974. Catalase. In Methods of Enzymatic Analysis. pp. 673-684, Academic Press, New York.
Blanken R.., Vilsteren M.J.T.., Tupker R.A.., Coenraads P.J.1989. Effect of mineral oil and linoleic-acid-containing emulsions on the skin vapour loss of sodium-lauryl-sulphate-induced irritant skin reactions. Contact Dermatitis. 20(2):93–97.
crossref
Chung J.H.., Seo J.Y.., Choi H.R.., Lee M.K.., Youn C.S.., Rhie G.., Cho K.H.., Kim K.H.., Park K.C.., Eun H.C.2001. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J. Invest. Dermatol. 117(5):1218–1224.
crossref
Cole N.., Sou P.W.., Ngo A.., Tsang K.H.., Severino J.A.., Arun S.J.., Duke C.C.., Reeve V.E.2010. Topical 'Sydney' Propolis Protects against UV-Radiation-Induced Inflammation, Lipid Peroxidation and Immune Suppression in Mouse Skin. Int. Arch. Allergy Immunol. 152(2):87–97.
crossref
El-Domyati M.., Attia S.., Saleh F.., Brown D.., Birk D.E.., Gasparro F.., Ahmad H.., Uitto J.2002. Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp. Dermatol. 11(5):398–405.
Fisher G.J.., Datta S.C.., Talwar H.S.., Wang Z.Q.., Varani J.., Kang S.., Voorhees J.J.1996. Molecular basis of sun-induced premature skin ageing and retinoid. Nature. 379:335–339.
Fisher G.J.., Kang S.., Varani J.., Bata-Csorgo Z.., Wan Y.., Datta S.., Voorhees J.J.2002. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 138:1462–1470.
crossref
Fitzpatrick R.E.., Rostan E.F.2003. Reversal of photodamage with topical growth factors: a pilot study. J. Cosmet. Laser Ther. 5:25–34.
crossref
Ghersetich I.., Lotti T.., Campanile G.., Grappone C.., Dini G.1994. Hyaluronic acid in cutaneous intrinsic aging. Int. J. Dermatol. 33(2):119–122.
crossref
Haratake A.., Uchida Y.., Schmuth M.., Tanno O.., Yasuda R.., Epstein J.H.., Elias P.M.., Holleran W. M.1997. UVB-induced alterations in permeability barrier function: roles for epidermal hyperproliferation and thymocyte-mediated response. J. Invest. Dermatol. 108(5):769–775.
crossref
Inomata S.., Matsunaga Y.., Amano S.., Takada K.., Kobayashi K.., Tsunenaga M.., Nishiyama T.., Kohno Y.., Fukuda M.2003. Possible involvement of gelatinase in basement membrane damage and wrinkle formation in chronically. J. Invest. Dermatol. 120(1):128–134.
Jiang S.J.., Chu A.W.., Lu Z.F.., Pan M.H.., Che D.F.., Zhou X.J.2007. Ultraviolet B-induced alterations of the skinbarrier and epidermal calcium gradient. Exp. Dermatol. 16(12):985–992.
Kim S.H.., Nam G.W.., Kang B.Y.., Lee H.K.., Moon S.J.., Chang I.S.2005. The effect of kaempferol quercetin on hyaluronan-synthesis stimulation in human keratinocytes (HaCaT). Korean J. Food Sci. Nutr. 31:97–102.
Kligman L.H.1996. The hairless mouse model for photoaging. Clin. Dermatol. 14:183–195.
crossref
Lee K.K.., Kim J.H.., Cho J.J.., Choi J.D.1999. Inhibitory effects of 150 plant extracts on elastase activity, and their anti-inflammatory effects. Int. J. Cosmet. Sci. 21(2):71–82.
crossref
Lowry O.H.., Rosebrough N.J.., Farr A.L.., Randall R.J.1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193(1):265–275.
crossref
Makrantonaki E.., Zouboulis C. C.2007. Characteristics and pathomechanisms of endogeniously aged skin. Dermatol. 214(4):352–360.
Martin J.P.., Dailey M.., Sugarman E.1987. Negative and positive assays of superoxide dismutase based on hematoxylin autooxidation. Arch. Biochem. Biophys. 225(2):329–336.
Martin P.., Hopkinson-Woolley J.., McCluskey J.1992. Growth factors and cutaneous wound repair. Prog. Growth Factor Res. 4(1):25–44.
crossref
Massague J.1998. TGF-β signal transduction. Ann. Rev. Biochem. 67:753–791.
Matsumura Y.., Ananthaswamy H.N.2004. Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. Pharmacol. 195(3):298–308.
crossref
Oba A.., Edwards C.2006. Relationships between changes in mechanical properties of the skin, wrinkling, and destruction of dermal collagen fiber bundles caused by photoaging. Skin Res. Technol. 12(4):283–288.
crossref
Peltonen J.., Kahari L.., Jaakkola S.., Kahari V.M.., Varga J.., Uitto J.., Jimenez S. A.1990. Evaluation of transforming growth factorβ and type procollagen gene expression in fibrotic skin diseases by in situ hybridization. J. Invest. Dermatol. 94(3):365–371.
Quan T.., He T.., Kang S.., Voorhees J.J.., Fisher G.J.2002. Ultraviolet irradiation alters transforming growth factor beta/smad pathway in human skin in vivo. J. Invest. Dermatol. 119(2):499–506.
Rittie L.., Fisher G.J.2002. UV-light-induced signal cascades and skin aging. Ageing Res. Rev. 1(4):705–720.
crossref
Sander C.S.., Chang H.., Salzmann S.., Muller, C.S. Ekanayake-Mudiyanselage S.., Elsner P.., Thiele J.J.2002. Photoaging is associated with protein oxidation in human skin in vivo. J. Invest. Dermatol. 118:618–625.
crossref
Schmid P.., Kunz S.., Cerletti N.., Mcmaster G.., Cox D.1993. Injury induced expression of TGF-β1 mRNA is enhanced by exogenously applied TGF-βs. Biochem. Biophys. Res. Comm. 194(1):399–406.
crossref
Seite S.., Zucchi H.., Septier D.., Igondjo-Tchen S.., Senni K.., Godeau G.2006. Elastin changes during chronological and photo-ageing: the important role of lysozyme. J. Eur. Acad. Dermatol. Venereol. 20(8):980–987.
crossref
Seo J.Y.., Cho K.H.., Eun H.C.., Chung J.H.2001. Skin aging from phenotype to mechanism. Korean J. Invest. Dermatol. 8(4):187–194.
Stripe F.., Della C.E.1969. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase(type D) oxidase (type O). J. Biol. Chem. 244(14):3855–3863.
Sunderkötter C.., Kalden H.., Luger T.A.1997. Aging and the skin immune system. Arch. Dermatol. 133(10):1256–1262.
crossref
Trevithick J.R.., Xiong H.., Lee S.., Shum D.T.., Sanford S.E.., Karlik S.J.., Norley C.., Dilworth GR.1992. Topical tocopherol acetate reduces post-UVB, sunburn-associated erythema, edema, and skin sensitivity in hairless mice. Arch. Biochem. Biophys. 296(2):575–582.
crossref
Waller J.M.., Maibach H.I.2006. Age and skin structure and function, a quantitativeapproach (II): protein, glycosaminoglycan, water, and lipidcontent and structure. Skin Res. Technol. 12(3):145–154.
Wlaschek M.., Briviba K.., Stricklin G.P.., Sies H.., Scharffetter-Kochanek K.1995. Singlet oxygen may mediate the ultraviolet A-induced synthesis of interstitial collagenase. J. Invest. Dermatol. 104(2):194–198.
crossref
Yaar M.., Gilchrist B.A.1999. Aging of skin. Dermatology in general medicine. pp. 1697-1706, Mcgraw-Hill, New York.

Figure 1.
Comparison of replica images in SKH-1 hairless mice at 6 weeks after the beginning of experiment a: normal group, b: UVB irradiation group, c: aged group (A). Histological observation on SKH-1 hairless mouse skin at 6 weeks after the beginning of experiment. H&E stain, ×100 & ×400 (enlarged box) (B). Masson's trichrome stain, ×200 (C). Verhoeff's stain, ×200 & ×400(enlarged box) (D). Toluidine blue stain, ×200 (E). Immunohistochemical staining for TGF-β in SKH-1 hairless mouse skin at 6 weeks after the beginning of experiment, ×200 (F).
lar-26-173f1.tif
Figure 2.
Comparison of MMP-3 expression in hairless mice skin at 6 weeks after the beginning of experiment. Values are mean±SD of 6 mice. ∗∗P<0.01, ∗∗∗P<0.001 compared to the N group by ANOVA and Duncan's multiple range test.
lar-26-173f2.tif
Table 1.
Nucleotide sequence of the primers and expected size of PCR products
Items   Primers Expected size (bp)3)
GAPDH1) Forward (5'→3') CCCACTAACATCAAATGGGG  
  Reverse (5'→3') ACACATTGGGGGTAGGAACA 478
MMP-32) Forward (5'→3') TAGCAGGTTATCCTAAAAGCA  
  Reverse (5'→3') CCAGCTATTGCTCTTCAAT 317

1 )GAPDH: Glyceraldehyde-3-phosphate dehydrogenase

2 )MMP-3: Matrix metalloproteinase-3

3 )bp: basepair

Table 2.
Comparison of erythema index, water capacity, TEWL in SKH-1 hairless mice skin at 6 weeks after the beginning of experiment
Items Normal Experimental
N E1 E2
Erythema index1) 98.07±20.83 261.67±68.85∗∗∗ 208.81±31.01∗∗
Water capacity1) 61.83±6.90 43.40±10.87 49.42±6.19
TEWL2) 6.67±1.42 47.84±20.95∗∗∗ 6.43±1.73###

Values are mean±SD of 6 mice.

1) Unit: AU (Arbitrary Unit)

2) Unit: g//h TEWL: Transepidermal water loss, N: non-treatment group, E1: UVB irradiation group, E2: aged group

P<0.05,

∗∗ P<0.01,

∗∗∗ P<0.001 compared to the N group, and

### P<0.001 compared to the E1 group by ANOVA and Duncan's multiple range test.

Table 3.
Comparison of wrinkle parameters in SKH-1 hairless mice skin at 6 weeks after the beginning of experiment
Items Normal Experimental
N E1 E2
Total wrinkle area (mm2) 0.36±0.10 2.66±0.21∗∗∗ 0.67±0.15∗∗###
No. of wrinkles 18.80±3.27 66.00±4.42∗∗∗ 3 30.80±7.43∗∗###
Total length (mm) 5.04±1.26 29.96±2.06∗∗∗ 9.10±2.15∗∗###
Mean length (mm) 0.27±0.02 0.46±0.03∗∗∗ 0.30±0.02###
Mean depth (m) 47.59±2.99 51.39±2.21∗∗∗ 48.23±0.21##

Values are mean±SD of 6 mice. N: non-treatment group, E1: UVB irradiation group, E2: aged group,

P<0.05,

∗∗ P<0.01,

∗∗∗ P<0.001 compared to the N group, and

## P<0.01,

### P<0.001 compared to the E1 group by ANOVA and Duncan's multiple range test.

Table 4.
Comparison of xanthine oxidase (XO), superoxide dismutase (SOD) and catalase activities (CAT) in SKH-1 hairless mice skin at 6 weeks after the beginning of experiment
ltems Normal Experimental
N E1 E2
XO1) 3.69±0.40 9.24±01.55∗∗∗ 5.77±1.23##
SOD2) 20.49±2.02 14.71±0.98 12.89±1.01∗∗
CAT3) 8.10±1.45 3.47±1.47∗∗ 4.54±1.06∗∗

Values are mean±SD of 6 mice.

1 )Unit: nmole uric acid formed/mg protein/min

2 )Unit: U (50% inhibition of autoxidation of hematoxylin)/mg protein/min

3 )Unit: nmole H2O2 reduced/mg protein/min N: non-treatment group, E1: UVB irradiation group, E2: aged group

P<0.05,

∗∗ P<0.01,

∗∗∗ P<0.001 compared to the N group, and

## P<0.01 compared to the E1 group by ANOVA and Duncan's multiple range test.

TOOLS
Similar articles