1. Agache I, Akdis C, Jutel M, Virchow JC. Untangling asthma phenotypes and endotypes. Allergy. 2012; 67:835–846.
2. Martinez FD, Wright AL, Taussig LM, Holberg CJ, Halonen M, Morgan WJ. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med. 1995; 332:133–138.
3. Stein RT, Holberg CJ, Morgan WJ, Wright AL, Lombardi E, Taussig L, et al. Peak flow variability, methacholine responsiveness and atopy as markers for detecting different wheezing phenotypes in childhood. Thorax. 1997; 52:946–952.
4. Illi S, von Mutius E, Lau S, Niggemann B, Grüber C, Wahn U, et al. Perennial allergen sensitisation early in life and chronic asthma in children: a birth cohort study. Lancet. 2006; 368:763–770.
5. Kelley CF, Mannino DM, Homa DM, Savage-Brown A, Holguin F. Asthma phenotypes, risk factors, and measures of severity in a national sample of US children. Pediatrics. 2005; 115:726–731.
6. Castro-Rodriguez JA, Ramirez AM, Toche P, Pavon D, Perez MA, Girardi G, et al. Clinical, functional, and epidemiological differences between atopic and nonatopic asthmatic children from a tertiary care hospital in a developing country. Ann Allergy Asthma Immunol. 2007; 98:239–244.
7. Gratziou C, Lignos M, Dassiou M, Roussos C. Influence of atopy on exhaled nitric oxide in patients with stable asthma and rhinitis. Eur Respir J. 1999; 14:897–901.
8. Turato G, Barbato A, Baraldo S, Zanin ME, Bazzan E, Lokar-Oliani K, et al. Nonatopic children with multitrigger wheezing have airway pathology comparable to atopic asthma. Am J Respir Crit Care Med. 2008; 178:476–482.
9. Suh DI, Lee JK, Kim CK, Koh YY. Bronchial hyperresponsiveness to methacholine and adenosine 5'-monophosphate, and the presence and degree of atopy in young children with asthma. Clin Exp Allergy. 2011; 41:338–345.
10. Drews AC, Pizzichini MM, Pizzichini E, Pereira MU, Pitrez PM, Jones MH, et al. Neutrophilic airway inflammation is a main feature of induced sputum in nonatopic asthmatic children. Allergy. 2009; 64:1597–1601.
11. Rytilä P, Pelkonen AS, Metso T, Nikander K, Haahtela T, Turpeinen M. Induced sputum in children with newly diagnosed mild asthma: the effect of 6 months of treatment with budesonide or disodium cromoglycate. Allergy. 2004; 59:839–844.
12. Cockcroft D, Davis B. Direct and indirect challenges in the clinical assessment of asthma. Ann Allergy Asthma Immunol. 2009; 103:363–369.
13. Van Den Berge M, Meijer RJ, Kerstjens HA, de Reus DM, Koëter GH, Kauffman HF, et al. PC(20) adenosine 5'-monophosphate is more closely associated with airway inflammation in asthma than PC(20) methacholine. Am J Respir Crit Care Med. 2001; 163:1546–1550.
14. De Meer G, Heederik D, Postma DS. Bronchial responsiveness to adenosine 5'-monophosphate (AMP) and methacholine differ in their relationship with airway allergy and baseline FEV(1). Am J Respir Crit Care Med. 2002; 165:327–331.
15. Munakata M. Exhaled nitric oxide (FeNO) as a non-invasive marker of airway inflammation. Allergol Int. 2012; 61:365–372.
16. Prieto L, Esnal S, Lopez V, Barato D, Rojas R, Marín J. Maximal response plateau to adenosine 5'-monophosphate in asthma. Relationship with the response to methacholine, exhaled nitric oxide, and exhaled breath condensate pH. Chest. 2009; 135:1521–1526.
17. Urbano FL. Review of the NAEPP 2007 Expert Panel Report (EPR-3) on Asthma Diagnosis and Treatment Guidelines. J Manag Care Pharm. 2008; 14:41–49.
18. Song DJ, Han YN, Lee JH, Kim HJ, Lim JY, Pee DH, et al. Lung function reference values in healthy Korean children. Pediatr Allergy Respir Dis. 2002; 12:105–113.
19. Chinn S. Methodology of bronchial responsiveness. Thorax. 1998; 53:984–988.
20. Heinzerling L, Frew AJ, Bindslev-Jensen C, Bonini S, Bousquet J, Bresciani M, et al. Standard skin prick testing and sensitization to inhalant allergens across Europe--a survey from the GALEN network. Allergy. 2005; 60:1287–1300.
21. Piacentini GL, Bodini A, Costella S, Vicentini L, Mazzi P, Sperandio S, et al. Exhaled nitric oxide and sputum eosinophil markers of inflammation in asthmatic children. Eur Respir J. 1999; 13:1386–1390.
22. Fitzpatrick AM, Brown LA, Holguin F, Teague WG. National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. Levels of nitric oxide oxidation products are increased in the epithelial lining fluid of children with persistent asthma. J Allergy Clin Immunol. 2009; 124:990–996.e1-9.
23. Cockcroft DW. Direct challenge tests: airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest. 2010; 138:18S–24S.
24. Franklin PJ, Turner SW, Le Souëf PN, Stick SM. Exhaled nitric oxide and asthma: complex interactions between atopy, airway responsiveness, and symptoms in a community population of children. Thorax. 2003; 58:1048–1052.
25. Lúdvíksdóttir D, Janson C, Björnsson E, Stålenheim G, Boman G, Hedenström H, et al. Different airway responsiveness profiles in atopic asthma, nonatopic asthma, and Sjögren's syndrome. BHR Study Group. Bronchial hyperresponsiveness. Allergy. 2000; 55:259–265.
26. Mochizuki H, Shigeta M, Tokuyama K, Morikawa A. Difference in airway reactivity in children with atopic vs nonatopic asthma. Chest. 1999; 116:619–624.
27. Stein RT, Sherrill D, Morgan WJ, Holberg CJ, Halonen M, Taussig LM, et al. Respiratory syncytial virus in early life and risk of wheeze and allergy by age 13 years. Lancet. 1999; 354:541–545.
28. Skevaki CL, Psarras S, Volonaki E, Pratsinis H, Spyridaki IS, Gaga M, et al. Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features. Clin Transl Allergy. 2012; 2:14.
29. Piedimonte G. Contribution of neuroimmune mechanisms to airway inflammation and remodeling during and after respiratory syncytial virus infection. Pediatr Infect Dis J. 2003; 22:S66–S74.
30. Son JW, Kim YK, Chung JW, Lee SR, Cho SH, Min KU, et al. Comparison of basophil histamine releasability between atopic and nonatopic asthmatics. J Korean Med Sci. 1999; 14:153–158.
31. Hong SJ, Lee SY, Kim HB, Kim JH, Kim BS, Choi SO, et al. IL-5 and thromboxane A2 receptor gene polymorphisms are associated with decreased pulmonary function in Korean children with atopic asthma. J Allergy Clin Immunol. 2005; 115:758–763.