Journal List > J Korean Acad Periodontol > v.33(1) > 1049375

Lee, Choi, You, and Shin: Effects of Several Herbal Medicines on Alkaline Phosphatase Activity in Human Fetal Osteoblasts

Abstract

Several growth factors and polypeptides are not commonly yet used for regenerators of bone tissue or alveolar bone because of the insufficiency of studies on their side effects, genetic engineering for mass production and stability for clinical application. Recently, many herbal medicines, which have advantage of less side effects and possibility of long-term use, have been studied for their capacity and effects of anti-bacterial, anti-inflammatory and regenerative potential of periodontal tissues. Morindae Radix, Cibotium Barometz (L.), Albizziae Cortex, Cistandhis Herba have been traditionally used as medicines for treatment of bone disease in Eastern medicine.
The objective of the present study is to examine the ability of alkaline phosphatase (ALP) activity of human fetal osteoblast (hFOB1) when several natural medicines were supplemented. hFOB1 were cultured with Dulbecuo's Modified Eagle's Medium Nutrient Mixture F-12 HAM (DMEM/F-12 1:1 Mixture, Sigma, USA) and negative control, dexamethasone (positive control), and each natural medicines for 3 days. And then ALP activity was measured by spectrophotometer for enzyme activity and Alizarin red S staining for morphometry.
Among the natural medicines of this study, Morindae Radix, Cibotium Barometz (L.) and Cistanchis Herba induced higher activity of ALP synthesis than negative controls in all experimental group. Albizziae Cortex showed mild increases than negative control group. According to measurement of positively stained area, all of the natural medicines of this study increased compared to negative control. Especially, Cibotium Barometz (L.) and Cistanchis Herba showed statistical significance compared to negative control (p<0.05).
These results indicate that Morindae Radix, Cibotium Barometz (L.), Albizziae Cortex, Cistandhis Herba have an inducing ability of ALP synthesis on osteoblast.

TOOLS
Similar articles