1. Sagripanti JL, Bonifacino A. Cytotoxicity of liquid disinfectants. Surg Infect (Larchmt). 2000; 1:3–14.
2. Hidalgo E, Dominguez C. Mechanisms underlying chlorhexidine-induced cytotoxicity. Toxicol In Vitro. 2001; 15:271–276.
3. Balentine DA, Wiseman SA, Bouwens LC. The chemistry of tea flavonoids. Crit Rev Food Sci Nutr. 1997; 37:693–704.
4. Taylor PW, Hamilton-Miller JM, Stapleton PD. Antimicrobial properties of green tea catechins. Food Sci Technol Bull. 2005; 2:71–81.
5. Hamilton-Miller JM. Antimicrobial properties of tea (
Camellia sinensis L.). Antimicrob Agents Chemother. 1995; 39:2375–2377.
6. Yoda Y, Hu ZQ, Zhao WH, Shimamura T. Different susceptibilities of
Staphylococcus and Gram-negative rods to epigallocatechin gallate. J Infect Chemother. 2004; 10:55–58.
7. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests. Approved standard M2-A7. 7th ed. Wayne, PA, USA: NCCLS;2000.
8. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard M7-A6. 6th ed. Wayne, PA, USA: NCCLS;2003.
9. Andonova M, Urumova V. Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa-review. Comp Immunol Microbiol Infect Dis. 2013; 36:433–448.
10. Chang CM, Lee HC, Lee NY, Lee IW, Wu CJ, Chen PL, et al. Community-acquired Klebsiella pneumoniae complicated skin and soft-tissue infections of extremities: emphasis on cirrhotic patients and gas formation. Infection. 2008; 36:328–334.
11. Moet GJ, Jones RN, Biedenbach DJ, Stilwell MG, Fritsche TR. Contemporary causes of skin and soft tissue infections in North America, Latin America, and Europe: report from the SENTRY Antimicrobial Surveillance Program (1998-2004). Diagn Microbiol Infect Dis. 2007; 57:7–13.
12. Ruef C. Complicated skin and soft-tissue infections--consider gram-negative pathogens. Infection. 2008; 36:295.
13. Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med. 1992; 21:334–350.
14. Toda M, Okubo S, Ikigai H, Shimamura T. Antibacterial and anti-hemolysin activities of tea catechins and their structural relatives. Nihon Saikingaku Zasshi. 1990; 45:561–566.
15. Arakawa H, Maeda M, Okubo S, Shimamura T. Role of hydrogen peroxide in bactericidal action of catechin. Biol Pharm Bull. 2004; 27:277–281.
16. Ikigai H, Nakae T, Hara Y, Shimamura T. Bactericidal catechins damage the lipid bilayer. Biochim Biophys Acta. 1993; 1147:132–136.
17. Nakagawa K, Miyazawa T. Absorption and distribution of tea catechin, (-)-epigallocatechin-3-gallate, in the rat. J Nutr Sci Vitaminol (Tokyo). 1997; 43:679–684.
18. Nakagawa K, Okuda S, Miyazawa T. Dose-dependent incorporation of tea catechins, (-)-epigallocatechin-3-gallate and (-)-epigallocatechin, into human plasma. Biosci Biotechnol Biochem. 1997; 61:1981–1985.
19. Feng B, Fang Y, Wei SM. Effect and mechanism of epigallocatechin-3-gallate (EGCG). against the hydrogen peroxide-induced oxidative damage in human dermal fibroblasts. J Cosmet Sci. 2013; 64:35–44.
20. Elbling L, Herbacek I, Weiss RM, Jantschitsch C, Micksche M, Gerner C, et al. Hydrogen peroxide mediates EGCG-induced antioxidant protection in human keratinocytes. Free Radic Biol Med. 2010; 49:1444–1452.
21. Khokhar S, Magnusdottir SG. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United kingdom. J Agric Food Chem. 2002; 50:565–570.
22. El-Shahawi MS, Hamza A, Bahaffi SO, Al-Sibaai AA, Abduljabbar TN. Analysis of some selected catechins and caffeine in green tea by high performance liquid chromatography. Food Chem. 2012; 134:2268–2275.
23. Chow HH, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res. 2003; 9:3312–3319.
24. Morita O, Kirkpatrick JB, Tamaki Y, Chengelis CP, Beck MJ, Bruner RH. Safety assessment of heat-sterilized green tea catechin preparation: a 6-month repeat-dose study in rats. Food Chem Toxicol. 2009; 47:1760–1770.
25. Novy P, Rondevaldova J, Kourimska L, Kokoska L. Synergistic interactions of epigallocatechin gallate and oxytetracycline against various drug resistant
Staphylococcus aureus strains
in vitro. Phytomedicine. 2013; 20:432–435.
26. Hu ZQ, Zhao WH, Asano N, Yoda Y, Hara Y, Shimamura T. Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin-resistant
Staphylococcus aureus. Antimicrob Agents Chemother. 2002; 46:558–560.
27. Hu ZQ, Zhao WH, Hara Y, Shimamura T. Epigallocatechin gallate synergy with ampicillin/sulbactam against 28 clinical isolates of methicillin-resistant
Staphylococcus aureus. J Antimicrob Chemother. 2001; 48:361–364.
28. Lee YS, Han CH, Kang SH, Lee SJ, Kim SW, Shin OR, et al. Synergistic effect between catechin and ciprofloxacin on chronic bacterial prostatitis rat model. Int J Urol. 2005; 12:383–389.
29. Navon-Venezia S, Ben-Ami R, Carmeli Y. Update on
Pseudomonas aeruginosa and
Acinetobacter baumannii infections in the healthcare setting. Curr Opin Infect Dis. 2005; 18:306–313.