Journal List > J Rhinol > v.24(2) > 1044398

Lee, Choi, Lee, Jung, Seon, Lee, Kim, and Lee: Effect of Positional therapy on Patients with Obstructive Sleep Apnea: Meta-Analysis

Abstract

Background and Objectives:

Positional therapy is a therapeutic method for obstructive sleep apnea (OSA). However, little is known about the effectiveness of positional OSA treatment based on meta-analysis. Therefore, we undertook a review and meta-analysis of studies to assess the effect of positional therapy on OSA. Subjects and Method: We searched PubMed (Medline), OVID Medline, EMBASE, Cochrane Library, SCOPUS, Kore-aMed, MedRIC, and KSI KISS using the key words “obstructive sleep apnea” and “positional therapy”. To estimate the effect of positional OSA therapy, we analyzed the ratio of means (ROM) for pre- and post-treatment polysomnographic data including apnea-hypopnea index (AHI), lowest oxygen saturation, arousal index, and sleep efficiency.

Results:

Finally, twenty two studies from 21 papers were included in the meta-analysis. Positional therapy significantly de-creased AHI by 54.1% [ROM, 0.459; 95% confidence interval (CI), 0.394 to 0.534] and increased lowest oxygen saturation by 3.3% (ROM, 1.033; 95% CI, 1.020 to 1.046). However, positional therapy did not significantly change arousal index (ROM, 0.846; 95% CI, 0.662 to 1.081) or sleep efficiency (ROM, 1.008; 95% CI, 0.990 to 1.027).

Conclusion:

Positional therapy significantly improves respiratory parameters including AHI and lowest oxygen saturation in patients with OSA.

REFERENCES

1). Epstein LJ, Kristo D, Strollo PJ Jr, Friedman N, Malhotra A, Patil SP, et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med. 2009; 5:263–76.
2). American Academy of Sleep Medicine. International classification of sleep disorders. 3rd ed.Darien, IL: American Academy of Sleep Medicine;2014.
3). Shamsuzzaman AS, Gersh BJ, Somers VK. Obstructive sleep apnea: implications for cardiac and vascular disease. JAMA. 2003; 290:1906–14.
4). Wang JH, Kim YR, Jang YJ, Lee BJ, Chung YS. Compliance of au-to-adjusting positive airway pressure in Korean obstructive sleep apnea patients. J Rhinol. 2006; 13:92–6.
5). Choi JH, Cho JH. Effect of palatal implants on snoring and obstructive sleep apnea syndrome. J Rhinol. 2011; 18:89–93.
6). Oksenberg A, Silverberg DS. The effect of body posture on sleep-re-lated breathing disorders: facts and therapeutic implications. Sleep Med Rev. 1998; 2:139–62.
crossref
7). Cartwright RD. Effect of sleep position on sleep apnea severity. Sleep. 1984; 7:110–4.
crossref
8). Oksenberg A, Silverberg DS, Arons E, Radwan H. Positional vs non-positional obstructive sleep apnea patients: anthropomorphic, noc-turnal polysomnographic, and multiple sleep latency test data. Chest. 1997; 112:629–39.
9). Morgan TD. Novel Approaches to the Management of Sleep-Disor-dered Breathing. Sleep Med Clin. 2016; 11:173–87.
crossref
10). Choi JH, Park YH, Hong JH, Kim SJ, Park DS, Miyazaki S, et al. Efficacy study of a vest-type device for positional therapy in position dependent snorers. Sleep Biol Rhythms. 2009; 7:181–7.
crossref
11). Caples SM, Rowley JA, Prinsell JR, Pallanch JF, Elamin MB, Katz SG, et al. Surgical modifications of the upper airway for obstructive sleep apnea in adults: a systematic review and meta-analysis. Sleep. 2010; 33:1396–407.
crossref
12). Cochrane Group: Cochrane handbook for systematic reviews of in-terventions-Version 5.1. 2012. Available from URL. http://www.co-chrane-handbook.org/.
13). Cartwright RD, Lloyd S, Lilie J, Kravitz H. Sleep position training as treatment for sleep apnea syndrome: a preliminary study. Sleep. 1985; 8:87–94.
crossref
14). Cartwright R, Ristanovic R, Diaz F, Caldarelli D, Alder G. A comparative study of treatments for positional sleep apnea. Sleep. 1991; 14:546–52.
crossref
15). Kushida CA, Sherrill CM, Hong SC, Palombini L, Hyde P, Dement WC. Cervical positioning for reduction of sleep-disordered breathing in mild-to-moderate OSAS. Sleep Breath. 2001; 5:71–8.
crossref
16). Skinner MA, Kingshott RN, Jones DR, Homan SD, Taylor DR. El-evated posture for the management of obstructive sleep apnea. Sleep Breath. 2004; 8:193–200.
crossref
17). Zuberi NA, Rekab K, Nguyen HV. Sleep apnea avoidance pillow ef-fects on obstructive sleep apnea syndrome and snoring. Sleep Breath. 2004; 8:201–7.
crossref
18). Oksenberg A, Silverberg D, Offenbach D, Arons E. Positional therapy for obstructive sleep apnea patients: A 6-month follow-up study. Laryngoscope. 2006; 116:1995–2000.
crossref
19). Loord H, Hultcrantz E. Positioner–a method for preventing sleep apnea. Acta Otolaryngol. 2007; 127:861–8.
crossref
20). Skinner MA, Kingshott RN, Filsell S, Taylor DR. Efficacy of the ‘tennis ball technique' versus nCPAP in the management of posi-tion-dependent obstructive sleep apnoea syndrome. Respirology. 2008; 13:708–15.
crossref
21). Permut I, Diaz-Abad M, Chatila W, Crocetti J, Gaughan JP, D'Alonzo GE, et al. Comparison of positional therapy to CPAP in patients with positional obstructive sleep apnea. J Clin Sleep Med. 2010; 6:238–43.
crossref
22). Bignold JJ, Mercer JD, Antic NA, McEvoy RD, Catcheside PG. Ac-curate position monitoring and improved supine-dependent obstructive sleep apnea with a new position recording and supine avoidance device. J Clin Sleep Med. 2011; 7:376–83.
crossref
23). Kim SJ, Choi JH, Park YH, Hong JH, Park DS, Lee SH, et al. Positional therapy for the reduction of obstructive sleep apnea. Sleep Biol Rhythms. 2011; 9:150–6.
crossref
24). van Maanen JP, Richard W, Van Kesteren ER, Ravesloot MJ, Laman DM, Hilgevoord AA, et al. Evaluation of a new simple treatment for positional sleep apnoea patients. J Sleep Res. 2012; 21:322–9.
crossref
25). Heinzer RC, Pellaton C, Rey V, Rossetti AO, Lecciso G, Haba-Rubio J, et al. Positional therapy for obstructive sleep apnea: an objective measurement of patients' usage and efficacy at home. Sleep Med. 2012; 13:425–8.
crossref
26). van Maanen JP, Meester KA, Dun LN, Koutsourelakis I, Witte BI, Laman DM, Hilgevoord AA, de Vries N. The sleep position trainer: a new treatment for positional obstructive sleep apnoea. Sleep Breath. 2013; 17:771–9.
crossref
27). Levendowski DJ, Seagraves S, Popovic D, Westbrook PR. Assess-ment of a neck-based treatment and monitoring device for positional obstructive sleep apnea. J Clin Sleep Med. 2014; 10:863–71.
crossref
28). Dieltjens M, Vroegop AV, Verbruggen AE, Wouters K, Willemen M, De Backer WA, et al. A promising concept of combination therapy for positional obstructive sleep apnea. Sleep Breath. 2015; 19:637–44.
crossref
29). Jackson M, Collins A, Berlowitz D, Howard M, O'Donoghue F, Barnes M. Efficacy of sleep position modification to treat positional obstructive sleep apnea. Sleep Med. 2015; 16:545–52.
crossref
30). Bidarian-Moniri A, Nilsson M, Attia J, Ejnell H. Mattress and pillow for prone positioning for treatment of obstructive sleep apnoea. Acta Otolaryngol. 2015; 135:271–6.
crossref
31). Eijsvogel MM, Ubbink R, Dekker J, Oppersma E, de Jongh FH, van der Palen J, et al. Sleep position trainer versus tennis ball technique in positional obstructive sleep apnea syndrome. J Clin Sleep Med. 2015; 11:139–47.
crossref
32). Bidarian-Moniri A, Nilsson M, Rasmusson L, Attia J, Ejnell H. The effect of the prone sleeping position on obstructive sleep apnoea. Acta Otolaryngol. 2015; 135:79–84.
crossref
33). de Vries GE, Hoekema A, Doff MH, Kerstjens HA, Meijer PM, van der Hoeven JH, et al. Usage of positional therapy in adults with obstructive sleep apnea. J Clin Sleep Med. 2015; 11:131–7.
crossref

Fig. 1.
Forest plots for the effectiveness of positional therapy on respiratory and sleep parameters.
jr-24-94f1.tif
Fig. 2.
Funnel plots for respiratory and sleep parameters.
jr-24-94f2.tif
Table 1.
Characteristics of the included studies
Author ( year) No. of samples No. of males Age ( year) BMI ( kg/m2) Severity of OSA ( mild/ moderate/ severe) Positional dependency Device for positional therapy Study duration (month) Level of evidence
Cartwright et al. (1985) 10 10 48.5±10.1 30.6±19.4 2/1/7 O Alarm type 3.2 Level 2b
Cartwright et al. (1991) 15 15 48.9±9.5 NA 1/7/7 X Alarm type 2 Level 2b
Kushida et al. (2001) 18 12 48.9±15.76 6 28.7±8.8 6/11/1 X Pillow type 5 days Level 2b
Skinner et al. (2004) 14 12 54.0±10.0 34.0±7.0 1/6/7 X Pillow type 1 Level 2b
Zuberi et al. (2004) 22 8 58.5±10.8 31.4±7.7 9/7/6 X Pillow type 12 Level 2b
Oksenberg et al. (2006) 12 NA NA 28.2±3.6 NA NA Ball type 2 Level 2b
Loord et al. (2007) 18 13 52.74± NA NA 5/10/3 O Pillow type 6.9 Level 2b
Skinner et al. (2008) 20 NA 55.9±9.8 30.7±5.1 7/9/4 O Ball type 1 Level 1b
Permut et al. (2010) 38 25 49.0±12.0 31.0±5.0 29/9/0 O Ball type NA Level 1b
Bignold et al. (2011) 15 13 58.2±13.9 28.8±2.5 NA O Alarm type NA Level 2b
Kim et al. (2011) 14 12 53.5±6.8 26.3±3.6 NA O Vest type NA Level 2b
Kim et al. (2011) 14 12 53.5±6.8 26.3±3.6 NA O Vest type NA Level 2b
van Maanen et al. (2012) 30 26 48.0±9.5 27.7±3.6 NA O Vibrator type 1.5 Level 1b
(2012) Heinzer et al. (2012) 16 13 58.4±15.1 25.4±4.1 NA O Ball type NA Level 2b
van Maanen et al. (2013) 31 27 48.1±11.0 27.0±3.7 13/18/0 O Vibrator type 1 Level 2b
Levendowski et al. (2014) 30 22 51.0±9.0 28.0±3.4 11/10/9 O Vibrator type 1 Level 2b
Dieltjens et al. (2015) 19 11 52.5±10.5 26.4±3.0 NA O Vibrator type NA Level 1b
Jackson et al. (2015) 47 37 48.0±11.2 30.0±5.3 NA O Ball type 1 Level 1b
Bidarian-Moniri et al. (2015) 14 11 51.0±11.4 26.0±3.5 NA X Pillow type 1 Level 2b
Eijsvogel et al. (2015) 29 23 50.1±10.6 27.6±4.5 NA O Vibrator type 1 Level 1b
Eijsvogel et al. (2015) 26 22 50.7±12.2 26.8±3.0 NA O Ball type 1 Level 1b
Eijsvogel et al. (2015) 26 22 50.7±12.2 26.8±3.0 NA O Ball type 1 Level 1b
Bidarian-Moniri et al. (2015) 27 22 51.0±9.8 28.0±3.3 NA X Pillow type NA Level 2b
de Vries et al. (2015) 40 34 51.1±8.3 28.0±4.1 20/18/2 O Ball type 3 Level 4

NA: not available

Table 2.
Effectiveness of positional therapy on respiratory and sleep parameters
Author ( year) No. of samples No. of Ratio of meanns (95% CI)
AHI Lowest oxygen saturation Arousal index Sleep efficiency
Cartwright et al. (1985) 10 0.391 (0.143, 1.070) 1.162 (1.023, 1.32) - -
Cartwright et al. (1991) 15 0.626 (0.287, 1.368) - - -
Kushida et al. (2001) 18 0.764 (0.564, 1.036) 0.975 (0.927, 1.026) - 1.046 (0.991, 1.104)
Skinner et al. (2004) 14 0.778 (0.480, 1.262) - - -
Zuberi et al. (2004) 22 0.473 (0.222, 1.010) 1.072 (1.015, 1.131) - -
Oksenberg et al. (2006) 12 0.376 (0.192, 0.737) - - 0.975 (0.825, 1.152)
Loord et al. (2007) 18 0.656 (0.377, 1.140) - - -
Skinner et al. (2008) 20 0.529 (0.297, 0.942) - - -
Permut et al. (2010) 38 0.216 (0.165, 0.282) 1.032 (1.010, 1.054) - 1.026 (0.964, 1.091)
Bignold et al. (2011) 15 0.548 (0.520, 0.578) 1.047 (1.038, 1.057) - -
Kim et al. (2011) 14 0.408 (0.244, 0.682) 1.016 (0.971, 1.063) 0.743 (0.591, 0.935) 0.988 (0.891, 1.096)
van Maanen et al. (2012) 30 0.462 (0.323, 0.661) - 0.756 (0.561, 1.017) 0.961 (0.916, 1.007)
Heinzer et al. (2012) 16 0.225 (0.147, 0.344) 1.031 (0.998, 1.065) - -
van Maanen et al. (2013) 31 0.469 (0.309, 0.711) 1.046 (1.023, 1.070) 0.82 (0.333, 2.019) 0.984 (0.825, 1.175)
Levendowski et al. (2014) 30 0.304 (0.199, 0.464) - 0.618 (0.472, 0.808) 1.052 (0.989, 1.119)
Dieltjens et al. (2015) 19 0.481 (0.301, 0.768) 1.049 (1.012, 1.088) 1.734 (1.215, 2.475) 1.006 (0.964, 1.049)
Jackson et al. (2015) 47 0.537 (0.402, 0.718) 1.022 (1.002, 1.042) 0.599 (0.494, 0.727) 0.990 (0.919, 1.065)
Bidarian-Moniri et al. (2015) 14 0.308 (0.177, 0.535) - - -
Eijsvogel et al. (2015) 29 0.855 (0.623, 1.173) - 1.233 (0.933, 1.63) 1.026 (0.972, 1.082)
Eijsvogel et al. (2015) 26 0.666 (0.460, 0.963) - 0.792 (0.605, 1.037) 0.995 (0.938, 1.055)
Bidarian-Moniri et al. (2015) 27 0.301 (0.197, 0.460) - - -
de Vries et al. (2015) 40 0.390 (0.361, 0.423) 1.020 (1.014, 1.026) - -
Overall 505 0.459 (0.394, 0.534) 1.033 (1.020, 1.046) 0.846 (0.662, 1.081) 1.008 (0.990, 1.027)
Heterogeneity-I2(%) 85.0 (78.5, 89.5) 73.0 (50.7, 85.3) 82.5 (66.8, 90.8) 0.0 (0.0, 56.4)
p-value <0.001 <0.001 <0.001 0.521

: The process of meta-analysis with paired difference data: estimates using the Hegde’s corrected standardized mean difference assuming the random-effect model. CI: confidence interval

Table 3.
Result of Meta-ANOVA
Variable AHI p-value Lowest O2 (%) p-value Arousal index p-value Sleep efficiency p-value
ROM (95% CI) ROM (95% CI) ROM (95% CI) ROM (95% CI)
Meta-ANOVA
Method 0.135 0.102 0.347 0.576
Alarm 0.548 (0.520, 0.578) 1.081 (0.984, 1.188) - -
Ball-type 0.385 (0.289, 0.514) 1.021 (1.015, 1.026) 0.678 (0.517, 0.889) 1.003 (0.968, 1.040)
Pillow-type 0.515 (0.351, 0.756) 1.022 (0.931, 1.121) - 1.046 (0.991, 1.104)
Vest-type 0.408 (0.244, 0.682) 1.016 (0.971, 1.063) 0.743 (0.591, 0.935) 0.988 (0.891, 1.096)
Vibrator 0.493 (0.346, 0.703) 1.047 (1.027, 1.067) 0.970 (0.649, 1.450) 1.006 (0.974, 1.039)
Positional dependency 0.574 0.801 - 0.16
Presence 0.447 (0.375, 0.533) 1.034 (1.021, 1.047) 0.846 (0.662, 1.081) 1.004 (0.984, 1.024)
Absence 0.462 (0.396, 0.539) 1.022 (0.931, 1.121) - 1.046 (0.991, 1.104)

ROM: ratio of means, CI: confidence interval

Table 4.
Result of Meta-regression
Variable AHI p-value Lowest O2 (%) p-value Arousal index p-value Sleep efficiency p-value
AHI Coefficient (95% CI) Lowest O2 (%) Coefficient (95% CI) Arousal index Coefficient (95% CI) Sleep efficiency Coefficient (95% CI)
Meta-regression
Age (year)2 -0.016 (-0.064, 0.032) 0.507 0.002 (-0.001, 0.004) 0.185 0.062 (-0.59, 0.184) 0.315 0.004 (-0.008, 0.016) 0.552
BMI ( kg/m2) 0.047 (-0.024, 0.119) 0.193 0.001 (-0.006, 0.009) 0.729 -0.152 (-0.350, 0.045) 0.131 0.006 (-0.008, 0.019) 0.425

CI: confidence interval

TOOLS
Similar articles