Journal List > J Rhinol > v.22(2) > 1044347

Jeong, Kim, Hong, Chung, Dhong, and Kim: Differences of Short-Term Systemic Responses in Obstructive Sleep Apnea Patient by Compliance of Continuous Positive Airway Pressure

Abstract

Background

Obstructive sleep apnea (OSA) is characterized by repeated apnea, hypopnea, and micro-arousals during sleep. Many studies have described correlations between OSA and multiple systemic diseases, such as cardiovascular, cerebrovascular, and metabolic diseases. The aim of this study was to determine whether the compliance of continuous positive airway pressure (CPAP) affects the short-term systemic responses in OSA patients.

Methods

Twenty-four newly diagnosed OSA patients were enrolled. All subjects used CPAP for 4 weeks. The subjects were divided into two groups according to the rate of using CPAP over 4 hours per night. Complete blood cell count, coagulation results, blood chemistry, lipid profiles, and pulmonary function results were evaluated at baseline, and were followed up after 4 weeks.

Results

After CPAP treatment, WBC count, hemoglobin, hematocrit, albumin, AST, ALT, Cl, and peak expiratory flow rate (PEFR) were significantly changed in the higher compliance group (n=14), whereas platelet count and triglyceride levels were significantly changed in the lower compliance group (n=10). In multivariate analysis, the changes in WBC count, hemoglobin and hematocrit were statistically significant between the higher compliance and lower compliance groups (p=0.0056, 0.0016, and 0.0051).

Conclusion

The compliance of CPAP affects the short-term systemic responses in OSA patient.

References

1). Chung YS. Pathogenesis of Obstructive Sleep Apnea. J Rhinol. 2009; 16:87–90.
2). Kim J, In K, Kim J, You S, Kang K, Shim J, et al. Prevalence of sleep-disordered breathing in middle-aged Korean men and women. Am J Respir Crit Care Med. 2004; 170:1108–13.
crossref
3). Mo JH. Obstructive Sleep Apnea and Systemic Diseases. J Rhinol. 2013; 20:8–12.
4). Jullian-Desayes I, Joyeux-Faure M, Tamisier R, Launois S, Borel AL, Levy P, et al. Impact of obstructive sleep apnea treatment by continuous positive airway pressure on cardiometabolic biomarkers: a systematic review from sham CPAP randomized controlled trials. Sleep Med Rev. 2015; 21:23–38.
crossref
5). Unnikrishnan D, Jun J, Polotsky V. Inflammation in sleep apnea: an update. Rev Endocr Metab Disord. 2015; 16:25–34.
crossref
6). Kohler M, Pepperell JC, Davies RJ, Stradling JR. Continuous positive airway pressure and liver enzymes in obstructive sleep apnoea: data from a randomized controlled trial. Respiration. 2009; 78:141–6.
crossref
7). Guilleminault C, Abad VC. Obstructive sleep apnea syndromes. Med Clin North Am. 2004; 88:611–30. viii.
crossref
8). Weaver TE, Maislin G, Dinges DF, Bloxham T, George CF, Greenberg H, et al. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep. 2007; 30:711–9.
crossref
9). Steiropoulos P, Kotsianidis I, Nena E, Tsara V, Gounari E, Hatzizi-si O, et al. Long-term effect of continuous positive airway pressure therapy on inflammation markers of patients with obstructive sleep apnea syndrome. Sleep. 2009; 32:537–43.
crossref
10). Chin K, Nakamura T, Takahashi K, Sumi K, Ogawa Y, Masuzaki H, et al. Effects of obstructive sleep apnea syndrome on serum aminotransferase levels in obese patients. Am J Med. 2003; 114:370–6.
crossref
11). Norman D, Bardwell WA, Arosemena F, Nelesen R, Mills PJ, Lore-do JS, et al. Serum aminotransferase levels are associated with markers of hypoxia in patients with obstructive sleep apnea. Sleep. 2008; 31:121–6.
crossref
12). Lin MT, Lin HH, Lee PL, Weng PH, Lee CC, Lai TC, et al. Beneficial effect of continuous positive airway pressure on lipid profiles in obstructive sleep apnea: a metaanalysis. Sleep Breath. 2015; 19:809–17.
crossref
13). Dewan NA, Nieto FJ, Somers VK. Intermittent hypoxemia and OSA: implications for comorbidities. Chest. 2015; 147:266–74.
14). Karamanlı H1. Özol D, Ugur KS, Yıldırım Z, Armutçu F, Bozkurt B, et al. Influence of CPAP treatment on airway and systemic inflammation in OSAS patients. Sleep Breath. 2014; 18:251–6.
crossref
15). Sökücü SN, Ozdemir C, Dalar L, Karasulu L, Aydın S, Altın S. Complete blood count alterations after six months of continuous positive airway pressure treatment in patients with severe obstructive sleep apnea. J Clin Sleep Med. 2014; 10:873–8.
crossref
16). Umlauf MG, Chasens ER. Sleep disordered breathing and nocturnal polyuria: nocturia and enuresis. Sleep Med Rev. 2003; 7:403–11.
crossref
17). Varol E, Ozturk O, Yucel H, Gonca T, Has M, Dogan A, et al. The effects of continuous positive airway pressure therapy on mean platelet volume in patients with obstructive sleep apnea. Platelets. 2011; 22:552–6.
crossref
18). Robinson GV, Pepperell JC, Segal HC, Davies RJ, Stradling JR. Circulating cardiovascular risk factors in obstructive sleep apnoea: data from randomised controlled trials. Thorax. 2004; 59:777–82.
crossref
19). Phillips CL, Yee BJ, Marshall NS, Liu PY, Sullivan DR, Grunstein RR. Continuous positive airway pressure reduces postprandial lipidemia in obstructive sleep apnea: a randomized, placebo-controlled crossover trial. Am J Respir Crit Care Med. 2011; 184:355–61.
20). Schlatzer C, Schwarz EI, Kohler M. The effect of continuous positive airway pressure on metabolic variables in patients with obstructive sleep apnoea. Chron Respir Dis. 2014; 11:41–52.
crossref

Table 1.
Baseline characteristics of higher compliance group and lower compliance group
Variable Total (n=24) Lower compliance group (n=10) Higher compliance group (n=14) p-value
Age (years) 48.5±12.6 48.0±16.5 48.8±9.5 0.8839
Male: Female 21: 3 9: 1 12: 2 1.0000
BMI 26.9±3.40 26.6±2.90 27.0±3.80 0.8836
Waist circumference (cm) 94.4±7.50 92.5±6.20 95.7±8.30 0.5003
Neck circumference (cm)        
  At supine 41.2±3.30 40.2±2.60 42.0±3.60 0.1926
  At sitting 39.7±3.00 39.0±2.40 40.2±3.30 0.3245
AHI 52.4±23.9 36.3±16.7 63.9±21.9 0.0077*

* p<0.05. BMI: body mass index (kg/m2), AHI: apnea-hypopnea index (/hr)

Table 2.
The changes of complete blood cell count and coagulation test after 4 weeks CPAP treatment
Variable Lower compliance group Higher compliance group
Baseline After p-value Baseline After p-value
Complete blood cell count
WBC 006.8±1.9 006.7±2.1 0.7879 008.0±1.7 007.0±1.4 0.0038
RBC 004.9±0.5 004.9±0.5 0.8566 004.9±0.5 004.8±0.5 0.1285
Hb 015.0±1.4 015.1±1.5 0.8227 015.4±1.2 014.8±1.1 0.0006
Hct 043.7±3.2 044.1±4.0 0.2611 044.8±2.8 043.9±2.4 0.0381
Plt 219.2±33.1 205.9±32.1 0.0046 232.9±66.7 245.0±54.2 0.8000
Coagulation test
PT 013.1±0.6 013.0±0.6 0.2402 012.6±0.7 012.6±0.5 0.7579
INR 001.0±0.1 001.0±0.1 0.2602 001.0±0.1 000.9±0.1 0.7904
aPTT 035.8±3.2 034.7±3.5 0.3663 037.6±5.1 037.2±5.4 0.3547

WBC: white blood cell (×103/μ L), RBC: red blood cell (×1003/μ L), Hb: hemoglobin (g/dl), Hct: hematocrit (%), Plt: platelet (×103/μ L), PT: prothrombin time (sec), INR: international normalized ratio of PT, aPTT: activeted partial thromboplastin time (sec)

Table 3.
The changes of blood chemistry and lipid profile after 4 weeks CPAP treatment
Variable Lower compliance group Higher compliance group
Baseline After p-value Baseline After p-value
Blood chemistry
Alb 004.6±0.2 004.5±0.2 0.3809 004.6±0.3 004.5±0.3 0.0218*
AST 024.9±12.9 023.2±8.0 0.3923 029.5±8.4 024.7±8.5 0.0084*
ALT 028.0±17.5 025.6±16.7 0.2610 043.8±21.9 033.1±19.5 0.0027*
FBS 098.6±11.2 105.7±15.7 0.2028 105.0±20.9 105.0±9.3 1.0000
BUN 015.1±5.4 014.3±4.9 0.2727 015.9±3.9 013.8±2.9 0.1332
Cr 000.9±0.1 001.0±0.2 0.7109 000.9±0.2 000.9±0.1 0.9069
Na 140.7±1.6 140.7±2.4 0.8633 139.8±1.4 141.0±2.1 0.1085
K 004.3±0.4 004.3±0.4 0.5120 004.3±0.3 004.3±0.3 0.3928
Cl 103.0±1.1 103.0±1.7 1.0000 101.8±1.8 103.4±2.1 0.0124*
Lipid profile
T-Chol 188.3±33.4 181.6±44.5 0.4231 198.9±43.2 192.7±32.6 0.2526
TG 193.2±154.4 233.6±163.1 0.0306* 204.8±117.5 199.6±70.8 0.8435
HDL-C 048.8±16.6 045.1±10.6 0.6563 049.4±11.4 047.7±11.8 0.1003
LDL-C 120.8±34.6 111.8±40.1 0.1043 126.7±39.2 121.7±34.1 0.3654

* p<0.05. Alb: albumin (g/dL), AST: aspartate transaminase (IU/L), ALT: alanine transaminase (IU/L), FBS: fasting blood sugar (mg/ dL), BUN: blood urea nitrogen (mg/dL), Cr: creatinine (mg/dL), Na: sodium (mmol/L), K: potassium (mmol/L), Cl: chloride (mmol/L), T-Chol: total cholesterol (mg/dlL, TG: triglyceride (mg/dL), HDL-C: high density lipoprotein cholesterol (mg/dL), LDL-C: low density lipoprotein cholesterol (mg/dL)

Table 4.
Univariable analysis of the significantly changed parameters after 4 weeks CPAP treatment with t-test and Wilcoxon rank sum test
Variable Lower compliance group Higher compliance group p-value
ΔWBC –0.1±1.60 –1.0±1.10 0.1258
ΔHb 0.0±0.30 –0.6±0.50 0.0019*
ΔHct 0.5±1.20 –1.0±1.60 0.0251*
ΔPlt –13.3±11.3 12.1±52.7 0.1497
ΔAlb –0.1±0.20 –0.1±0.10 0.5578
ΔAST –1.7±6.00 –4.8±5.80 0.2164
ΔALT –2.4±6.30 –10.6±10.8 0.0418*
ΔCl 0.0±1.70 1.6±2.00 0.0583
ΔTG 40.4±49.9 –5.2±96.9 0.1876
ΔPEFR 0.3±1.30 –1.1±1.80 0.0570

* p<0.05. Δ: change of parameter (after-baseline), PEFR: peak expiratory flow rate (l/sec)

Table 5.
Multivariable analysis of the significantly changed parameters after 4 weeks CPAP treatment with multiple linear regression analysis and multiple median regression analysis
Variable Regression coefficient Standard error t-statics p-value
Age, sex, baseline AHI, and baseline BMI adjusted model
Compliance group
ΔWBC –1.85 0.59 –3.14 0.0056*
ΔHb –0.75 0.20 –3.72 0.0016*
ΔHct –2.29 0.72 –3.18 0.0051*
ΔPlt 2.72 17.28 0.16 0.8767
ΔAlb –0.07 0.07 –0.99 0.3354
ΔAST –1.48 3.14 –0.47 0.6431
ΔALT –7.13 5.04 –1.41 0.1743
ΔCl 1.66 1.06 1.56 0.1359
ΔTG –56.30 56.72 –0.99 0.3341
ΔPEFR –2.04 1.35 –1.51 0.1476

* p<0.05

TOOLS
Similar articles